
 

 

 

 

 

PREDICTION OF BASELINE ACUTE RESPIRATORY DISTRESS IN 

SEVERE   MALARIA AFRICAN CHILDREN 

 

 

 

MSc (BIOSTATISTICS) THESIS 

 

 

 

 

 

INNOCENT HARVEY GONDWE 

 

 

 

 

 

 

UNIVERSITY OF MALAWI 

MAY, 2024 



 

 

 

PREDICTION OF BASELINE ACUTE RESPIRATORY DISTRESS IN 

SEVERE   MALARIA AFRICAN CHILDREN 

 

 

MSc (BIOSTATISTICS) THESIS 

 

By 

 

INNOCENT HARVEY GONDWE 

BScE (Mathematics and Physics) - Mzuzu University 

 

 

Submitted to the Department of Mathematical Sciences, School of Natural and Applied 

Sciences, in partial fulfilment of the requirements for the degree of Master of Science 

(Biostatistics) 

 

UNIVERSITY OF MALAWI 

 

MAY, 2024



 

 

DECLARATION 

 

I, the undersigned hereby declare that this thesis is my own original work which has not 

been submitted to any other institution for similar purposes. Where other people’s work 

has been used acknowledgements have been made. 

 

 

 

 

INNOCENT HARVEY GONDWE 

___________________________________ 

Full Legal Name 

 

 

 

 

 

 

 

 

 

 

_______________________________ 

Signature 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________ 

Date 

 

 



 

 

 

CERTIFICATE OF APPROVAL 

 

 

The undersigned certifies that this thesis represents the student’s own work and effort and 

has been submitted with my approval.  

 

 

Signature: _________________________Date: _________________________ 

Mavuto Mukaka, Ph.D. (Professor) 

Supervisor 

 

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

        

 

 



 

 

 

DEDICATION 

 

This thesis is dedicated to my late parents Richard and Agness Gondwe. Thank you for 

teaching me the importance of school. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ACKNOWLEDGEMENTS 

 
I would like to thank God for granting me the opportunity to do this research. Secondly, I 

would like to thank my supervisor, Professor Mavuto Mukaka, for his unwavering support 

and guidance through the whole process of conducting this research. His support and 

guidance made me complete this work in time and with less difficulties. I would also like 

to acknowledge Dr Tsirizani Kaombe, the Master of Science in Biostatistics programme 

coordinator and the entire leadership of the programme, for their encouragement through this 

process. 

 

I would also like to thank my wife Juliana Manda Gondwe and my son Richard Gondwe 

for their understanding, encouragement and support throughout the process of doing this 

research.  

 

It would not be complete if I fail to thank Tony Matimati, Joachim Nyirongo, Boswell 

Munthali, Madalitso Mtika, Brave Mwanza, Potiphar Damiano, Chikumbutso Wasera and the 

entire 2022 Master of Science in Biostatistics cohort for their support and encouragement 

throughout the journey of my studies. 

 

To all my friends and relatives, thank you for the encouragement and all your support and 

guidance till the completion of my research work. God bless you all. 

 

 



vi 

 

 

ABSTRACT 

Acute respiratory distress (ARD) is a global health concern due to its high rates of 

morbidity and mortality in children. Early identification of the predictors of baseline 

ARD is very vital to necessitate timely interventions and improved clinical management 

of the condition.  This study aimed at establishing a predictive model for predicting 

baseline ARD in African children with severe malaria. This retrospective cohort study 

used secondary data from ‘African Quinine-Artesunate Malaria Trial’ (AQUAMAT) that 

was conducted from 2005 to 2010, among children (<15 years) who had been 

hospitalized for severe malaria. The predictors of baseline ARD were determined using 

univariable and multivariable binary logistic regression models. A nomogram was 

constructed to visualise the predictive model. The Receiver Operating Characteristic 

(ROC) curve was plotted to evaluate the discriminative power of the predictive model. 

Classification tree analysis was done to classify patients at a higher or lower risk of 

developing baseline ARD. The outcome of interest was baseline ARD. The study 

included 5,426 children admitted with severe malaria. The multivariable binary logistic 

regression model revealed that the major predictors of baseline ARD were pneumonia 

[Odds Ratio (OR): 2.49, CI: 1.99 - 3.13, p-value < 0.001], severe acidosis (OR: 2.49, CI: 

2.09 - 2.97, p-value < 0.001), patient is currently treated for chronic illness (OR: 2.32, 

CI: 1.05-5.14, p-value = 0.038), hyperparasitaemia (OR: 1.96, CI: 1.21 - 3.16, p-value =

0.006), sepsis (OR: 1.46, CI: 1.18 - 1.82, p-value = 0.001), respiratory rate (OR: 1.03, 

CI: 1.03 - 1.04, p-value < 0.001). The predictive model was valuable in predicting 

baseline ARD with overall correct classification of 68.72% and area under the ROC 

curve of 0.75 (95% CI: 0.73 - 0.77). Classification tree ranked pneumonia, severe 

acidosis, hyperparasitaemia, sepsis, respiratory rate as well as severe prostration as major 

conditions classifying a patient of being at high risk of developing baseline ARD. These 

findings will help medical practitioners in early identification of severe malaria children 

who are at high risk of developing baseline ARD. This will necessitate improved 

management and timely interventions provided to such patients in order to prevent 

development of baseline ARD. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Since its initial description in 1967 by Ashbaugh et al. (1967), acute respiratory distress 

(ARD) has received widespread recognition as a significant clinical issue with a high 

morbidity and mortality burden (Confalonieri et al., 2017). Acute respiratory distress is a 

dangerous lung problem that is characterized by inadequate oxygenation and non-

compliant lungs.  This disease puts critically ill patients' lives in danger (Feliciano & 

Mahapatra, 2017). In ARD, surfactant disintegrates due to disruption of alveolar 

epithelial-endothelial permeability barrier leading to accumulation of protein-rich fluid 

inside the alveoli which results into hypoxemia (Heidemann et al., 2017).  

 

The most common causes or risk factors of acute respiratory distress are pneumonia, non-

pulmonary sepsis, aspiration of gastric contents, non-cardiogenic shock, pancreatitis, 

severe trauma, drug overdose and ischaemia-reperfusion injury (Bos & Ware, 2022; 

Feliciano & Mahapatra, 2017; Sweeney & McAuley, 2016). The chance of developing 

ARD from an underlying disorder can be increased by certain exposures, such as alcohol 

consumption, smoking, and exposure to pollution in the air (Calfee et al., 2015; Moazed 

et al., 2022; Reilly et al., 2019; Simou et al., 2018; Ware et al., 2016). According to Gong 

et al. (2005) and Toy et al. (2022), transfusion of blood products can lead to ARD and 
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raise risk when there is an underlying cause. Genetic variability may also enhance the 

risk; however, the majority of discovered variations are infrequent and have a low 

attributable risk (Reilly et al., 2017). 

 

Acute respiratory distress is a more common health burden worldwide. The incidence of 

ARD ranges from 1.5 cases per 100,000 person-years to nearly 79 cases per 100,000 

person-years (Brun-Buisson et al., 2004; Rubenfeld et al., 2005). Studies from Brazil 

reported incidence rates ranging from 1.8 to 31 per 100,000 person-years (Azevedo et al., 

2013; Caser et al., 2014). A study of patients in 459 intensive care units (ICUs) from 50 

countries in 2016 found that 23% of patients on mechanical ventilation and 10% of ICU 

patients met the criteria for ARD (Bellani et al., 2016). A total of 10.4% of all ICU 

admissions and 23.4% of patients needing mechanical ventilation among 4499 patients 

who had acute hypoxemic respiratory failure had ARD. In comparison to South America, 

Asia and Africa, higher incidence rates were found in North America, Oceania and 

Europe. 

 

In terms of lung maturation with age, developmental stages, epidemiology, comorbidities, 

and prognosis, there are significant distinctions between paediatric acute respiratory 

distress (PARD) and adult acute respiratory distress (ARD) (Flori et al., 2005; Quasney et 

al., 2015; Schouten et al., 2016; Thomas et al., 2013). Children and adults have different 

risk factors for developing ARD, and the particular impacts of bacterial or viral causative 

agents may contribute to the variability of PARD. In developing nations, including 

Africa, one in five instances of acute respiratory infection in children leads in a lower 
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respiratory tract infection, which accounts for between 11 and 20 million hospitalizations 

and 2 million paediatric fatalities annually (Bryce et al., 2005; Williams et al., 2002). 

This accounts for 20% of the 10.8 million deaths of children under the age of five that 

occur annually in the world (Bryce et al., 2005). According to Jeena (2008), pneumonia is 

one of the common causes of acute respiratory distress in children.  

 

In Africa, malaria continues to be a leading cause of illness and mortality in children. An 

estimated 619,000 individuals died from malaria worldwide in 2021 (WHO, 2022). There 

are four species of the protozoa in the genus Plasmodium, including; Plasmodium 

malaria, Plasmodium vivax, Plasmodium ovale, and Plasmodium falciparum, which 

cause the acute illness known as malaria. According to Hviid and Jensen (2015), 

Plasmodium falciparum is the most virulent malaria-causing species that affects humans, 

partly because of its wide range of antigenic diversity and capacity to dwell in the host 

tissues' microvasculature. It is believed that the etiology of the disease is largely 

influenced by the accumulation of mature Plasmodium falciparum infected erythrocytes 

in various tissues, which might cause circulation problems and inflammation (Hviid & 

Jensen, 2015).  

 

All deaths are caused by the Plasmodium falciparum infection, which is most common in 

Sub-Saharan Africa. About 90% of the world's 300-500 million malaria cases and 1.5-2.7 

million annual deaths occur in Sub-Saharan Africa (Breman et al., 2004; Helegbe et al., 

2007). Cerebral malaria, severe malarial anaemia, and respiratory distress are all part of 

the clinical symptoms of severe malaria caused by Plasmodium falciparum. Children 
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from Africa who have respiratory distress (RD), a consequence of severe malaria, have a 

very high risk of dying (Shah et al., 2021). A study conducted by Oduro et al. (2007) in 

Ghana revealed that severe anaemia (36.5%), respiratory distress (24.4%), and cerebral 

malaria (5.4%) are the three most prevalent symptoms of severe malaria. By adolescence, 

those who reside in areas with high rates of transmission usually acquire clinical 

immunity to severe falciparum malaria (Marsh & Kinyanjui, 2006). However, the burden 

of morbidity and mortality in the paediatric population is disproportionately high because 

children are at high risk for developing severe malaria.  

 

A study by Blumberg et al. (1996) on “predictors of mortality in severe malaria: a two-

year experience in a non-endemic area” reviewed the clinical profiles and therapy of 28 

consecutive patients with severe and complicated malaria admitted to Baragwanath 

Hospital ICU in Johannesburg, South Africa over a two-year period from January 1993 to 

December 1994. The study found that 13 patients were diagnosed with acute respiratory 

distress syndrome (ARDS) out of which eight (8) patients died.  

 

Marsh et al. (1995) studied 1844 children who were admitted to the paediatric ward of 

Kilifi District Hospital in Kenya with a primary diagnosis of malaria. It was revealed that 

the mortality rate was 3.5% and 84% of the deaths occurred within 24 hours of 

admission. These fatalities were associated with four prognostic indicators namely; 

impaired consciousness, respiratory distress, hypoglycaemia and jaundice. Despite the 

fact that many patients had overlapping symptoms, RD had the greatest mortality rate of 

the three syndromes in children. 
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In the original description of “acute respiratory distress syndrome in adults” by Ashbaugh 

and colleagues in 1967, special attention was paid to the inciting illness or injury which 

included; severe trauma, viral infection, acute pancreatitis and possible contributing 

factors which included; hypotension, acidosis, and fluid overload (Ashbaugh et al., 1967). 

That initial description has, over the years, evolved into the American European 

Consensus Conference (AECC) definition in 1994 and then the Berlin definition of 

ARDS for adults and the Paediatric Acute Lung Injury Consensus Conference (PALICC) 

definition of Paediatric Acute Respiratory Distress Syndrome (PARDS) (see, Bernard et 

al., 1994; PALICC, 2015; Ranieri et al., 2012). In these definitions, much attention 

continues to be paid towards understanding what conditions place patients at particular 

risk for ARDS development and what conditions contribute to worse ARDS clinical 

outcomes. 

Identifying risk factors and understanding which patients are at risk for developing acute 

respiratory distress is significantly important to be able to develop preventative and early 

interventions. In a bid to identify patients at risk of developing paediatric acute 

respiratory distress, Kuhne and Flori (2020), assessed risk factors and etiologies 

associated with the development of paediatric acute respiratory distress. It was 

determined that paediatric patients with pre-existing immunodeficiencies, for example, 

HIV were at an increases risk of both development of acute respiratory distress and worse 

outcomes after acute respiratory distress. It was also reported that increased Body Mass 

Index (BMI) has been shown to be associated with increased risk of acute respiratory 

distress development. Exposure to environmental factors such as smoke, air pollution, 
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nitrogen dioxide, sulphur dioxide, and particulate matter < 2.5 micrometres were reported 

to be significantly associated with ARDS development (Lin et al., 2018). 

 

The Paediatric Acute Respiratory Distress Incidence and Epidemiology (PARDIE) study, 

an international observational study, surveyed over 23,000 Paediatric Intensive Care Unit 

(PICU) admissions and 12,000 patients requiring mechanical ventilation (Khemani et al., 

2008). Of those patients, 744 (3.2%) were identified as having PARDS based on PALICC 

criteria. Among PARDS patients, the most common risk factor was pneumonia or lower 

respiratory tract infection (63%), followed by sepsis (19%), aspiration (8%), trauma 

(4%), other (3%), drowning (1%), and non-septic shock (1%). The Paediatric Acute and 

Critical Care Medicine Asian Network (PACCMAN) published a study in 2018 which 

compared “pulmonary” versus “extrapulmonary” ARDS (Kallet et al., 2017). The 

“extrapulmonary” group included patients with sepsis, massive transfusions, burns, multi-

trauma, and haemorrhagic shock and comprised 41 (13.4%) of the 307 patients with 

PARDS. In this cohort, the extrapulmonary group had higher mortality, higher proportion 

of multiple organ dysfunction, and higher median oxygenation index.  

Studies have found that acute respiratory distress is a major prognostic indictor of 

morbidity and mortality in children with severe malaria (Marsh et al., 1995; Mitran et al., 

2023). Other studies have generated predictive models for predicting acute respiratory 

distress in patients with sepsis or pneumonia (Lin et al., 2023; Lv et al., 2024; Watkins et 

al., 2012; Xul et al., 2023).  However, no predictive model has been developed to predict 

baseline acute respiratory distress in children who have severe malaria in Africa. Thus, 
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this study will embark on predicting baseline acute respiratory distress in severe malaria 

African children using appropriate statistical prediction models.  

  

1.2 Problem Statement 
 

Malaria is still a pressing public health concern in the African region despite a 2% 

decline in the number of annual deaths since 2015. There were 257,950 paediatric deaths 

in Africa in 2019, accounting for 67.2% of all malaria-related deaths across the board 

(WHO, 2021). This equates to a daily death toll of almost 707 children under the age of 

five (WHO, 2021). The prevalence is very high in Africa due to inadequate health care 

services as well as limited resources in the available health facilities. Studies have 

indicated that respiratory distress is a major prognostic indicator of morbidity and 

mortality in children with severe malaria (Marsh et al., 1995; Mitran et al., 2023). In 

developing nations, Africa in particular, one in five instances of acute respiratory 

infection in children accounts for between 11 and 20 million hospitalizations and 2 

million paediatric fatalities annually (Bryce et al., 2005; Williams et al., 2002). This 

accounts for 20% of the 10.8 million deaths of children under the age of five that occur 

annually in the world (Bryce et al., 2005).  

 

Studies conducted in Africa have focused on prognostic indicators associated with severe 

malaria, that would help predict mortality, of which respiratory distress was found to be a 

major prognostic indicator (Blumberg et al., 1996; Marsh et al., 1995; Mitran et al., 2023; 

Mzumara et al., 2021). Other studies have generated predictive models for predicting 

acute respiratory distress in patients with sepsis or pneumonia (Lin et al., 2023; Lv et al., 

2024; Watkins et al., 2012; Xul et al., 2023).  However, no predictive model has been 
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developed to predict baseline acute respiratory distress in children who have severe 

malaria in Africa. For that reason, this study will embark on predicting baseline acute 

respiratory distress in severe malaria African children using appropriate statistical 

prediction models.  

 

1.3 Study Objectives 
  

             1.3.1 General objective 

 

The general objective of the research is to generate a prediction model to predict baseline 

acute respiratory distress in children who have severe malaria in Africa.  

 

            1.3.2 Specific objectives 

 

i. Predict baseline acute respiratory distress in a cohort of severe malaria 

children using binary logistic regression model and nomogram. 

ii. Calculate measures of goodness-of-fit of the predictive model such as 

Hosmer-Lemeshow test, sensitivity, specificity, positive predictive 

values and negative predictive values. 

iii. Determine the predictive power of the model using Area Under the ROC 

Curve (AUC).  

iv. Classify patients as having a high or low risk of developing baseline 

ARD using classification tree. 
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           1.3.3 Study justification 

 

This study is worth conducting because it will: 

i. Assist medical practitioners in early identification of severe malaria 

children who are at high risk of developing baseline ARD. 

ii. Help improve management and timely interventions provided to malaria 

patients in order to prevent development of baseline ARD. 

iii. Help WHO and/or Ministries of Health in different countries to come up 

with health policies and guidelines that guide diagnosis and management 

of acute respiratory distress in severe malaria children. 

iv. Add to the body of knowledge in the scientific academic world. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Generalized Linear Models 
 

The theory of Generalized Linear Models (GLMs) was first introduced by Nelder and 

Wedderburn in 1972 (Nelder & Wedderburn, 1972). The aim of GLMs is to define the 

relationship between the observed response/outcome variable and a set of 

covariates/explanatory/predictor variables. The outcome variable is seen as a realization 

from a random variable. This class of models include those whose single response 

variable was assumed to have the variance reflected by a one-parameter exponential 

probability distribution. This family of distributions includes the Gaussian or normal, 

binomial, Poisson, gamma, inverse Gaussian, geometric, and negative binomial (Hardin 

& Hilbe, 2018; Kutner et al., 2004). The most common GLMs in medical applications are 

the logistic regression models (for categorical response variable) and Poisson regression 

models (for count response variable). There are different forms of logistic regression 

models which include: binary (categorical response variable with two possible 

outcomes), multinomial (categorical response variable with more than two unordered 

outcomes) and ordinal (categorical response variable with more than two ordered 

outcomes) logistic regression. The mathematical details of these three forms of logistic 

regression models will be discussed in the sections below. This study, in particular, 

applies binary logistic regression in predicting baseline acute respiratory distress. That is, 
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the response is either a patient has acute respiratory distress or not based on the presented 

predictors. 

 

2.2 Logistic Regression Models 

A logistic regression model is in the binomial family of generalized linear models. 

Logistic regression is a powerful statistical model used for modelling the relationship 

between a set of predictor variables and a categorical outcome variable. There are various 

forms of logistic regression model, such as binary logistic regression model (with logit or 

probit or complementary log-log link), multinomial logistic regression model and ordinal 

logistic regression model (with proportional odds) (Kutner et al., 2004; McCullagh & 

Nelder, 1989). The choice of a particular type of logistic regression model depends on the 

type of the categorical outcome of interest. Various types of logistic regression models 

are discussed in the following sections. 

 

2.2.1 Binary logistic regression model 

This model becomes handy when modelling events that have binary responses. Examples 

of such events, in medical research, include; treatment failure or success, disease status 

(yes or no), hospitalisation (yes or no), mortality (dead or alive), among others. This 

outcome can be represented by a binary indicator variable taking on dummy values 0 and 

1. A binary logistic regression model is based on the following key assumptions:  

1. Dichotomous outcome variable. The outcome variable should be measured on a 

dichotomous scale, meaning it has only two nominal/categorical values. 
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2. Mutually exclusive and exhaustive categories. The categories of the outcome 

variable should be mutually exclusive (no overlap) and exhaustive (cover all 

possible outcomes). 

3. Independence of observations. The observations (data points) should be 

independent of each other. This assumption ensures that the model is not 

influenced by repeated measurements or correlated data. 

4. No outliers. There should be no extreme outliers in the data that significantly 

affect the model’s performance. 

5. Linear relationship. Logistic regression assumes a linear relationship between the 

log-odds of the outcome and each predictor variable. However, the relationship is 

modelled using the logit function (S-shaped curve) rather than a straight line. 

6. Linearity of independent variables. The independent variables should have a 

linear effect on the log-odds of the outcome. If the relationship is nonlinear, 

transformations such as polynomial terms may be needed (Kutner et al., 2004; 

McCullagh & Nelder, 1989). 

 

If the outcome variable of a generalized linear regression model has two possible 

outcomes such that the probability, 𝑃(𝑌𝑖 = 1) = 𝑝 and 𝑃(𝑌𝑖 = 0) = 1 − 𝑝, then we need 

a transformation that will bound the values in the range of 0 to 1 as probability outside 

this range is invalid. Such transformation is necessitated by use of a known monotonic, 

one-to-one, differentiable link function 𝑔(⋅) relating the linear predictor to the fitted 

values.  (Kutner et al., 2004; McCullagh & Nelder, 1989). Because the function is one-to-
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one, there is an inverse function relating the mean expected response, 𝐸[𝑦] = 𝜇, to the 

linear predictor such that  

𝜇 = 𝑔−1(𝜂) = 𝐸[𝑦]. 

The commonly used link functions in a binary logistic regression model are as follows:   

1. When the outcome is binary and the interest is on assessing odds ratios, the logit 

link function is commonly used. The logit link function is given by 

𝑔(𝜇𝑖) = log (
𝜇𝑖

1 − 𝜇𝑖
). 

2.  If the outcome variable is considered as obtained by thresholding a normally 

distributed latent variable, then a probit link function is appropriate. That is, if 

normality is involved in the linear relationship and the interest is in the predictive 

and classification value of the model. The probit or inverse normal link function is 

given by 

𝑔(𝜇𝑖) = Φ−1(𝜇𝑖). 

3. Unlike logit and probit link functions, the log-log function approaches 1 more 

sharply than it approaches 0. The log-log link function is particularly useful when 

dealing with rare events. These are situations where the outcome (success or event 

occurrence) is extremely infrequent, for example, survival after cardiac arrest. It is 

also used if the outcome variable exhibits extreme probabilities (either very low 

or very high), for instance, success of glaucoma surgery. The log-log link function 

is given by 

𝑔(𝜇𝑖) = − log[− log(𝜇𝑖)]. 
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4. Complementary log-log link function is the complement of the log-log link 

function. It is used when dealing with rare events as well as events whose 

outcome variable exhibits extreme skewness (either unusually very low or very 

high probabilities). The complementary log-log link function is given by 

𝑔(𝜇𝑖) = − log[− log(1 − 𝜇𝑖)]. 

Let 𝑌 be a column vector of length 𝑁 where each element 𝑌𝑖 is a random variable 

representing the number of successes for population 𝑖. Let the column vector 𝑦 contain 

elements 𝑦𝑖 representing the observed counts of the number of successes for each 

population. Let 𝑝 be a column vector of length 𝑁 with elements 𝑝 = 𝑃(𝑌𝑖 = 1), i.e., the 

probability of “success” for any given observation in the 𝑖𝑡ℎ population. Suppose the 

outcome of interest 

𝑌𝑖 ∼ Binomial(𝑛, 𝑝) 

for a particular observation 𝑖, with a probability mass function 

𝑓(𝑦|𝛽) = (
𝑛
𝑦) 𝑝𝑦(1 − 𝑝)𝑛−𝑦,      for 𝑦 = 0, 1, 2, … , 𝑛 

where 𝑛 is the number of trials. Then, a plausible link function is the logit given by  

𝑔(𝑝) = log (
𝑝

1 − 𝑝
). 

The linear component of the model contains the design matrix and the vector of 

parameters to be estimated (Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & 

Nelder, 1989). The design matrix of independent variables 𝑿 is composed of 𝑁 rows and 

𝐾 + 1 columns, where 𝐾 is the number of independent variables specified in the model. 

The parameter vector 𝜷 is a column vector of length 𝐾 + 1. There is one parameter 
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corresponding to each of the 𝐾 columns of independent variable settings in 𝑿, plus one 

𝛽0, for the intercept. The logistic regression model equates the logit transform i.e., the 

log-odds of the probability of a success, to the linear component as follows 

  

log (
𝑝

1 − 𝑝
) = 𝑿𝑇𝜷 =  ∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗                 𝑖 = 1, 2, … , 𝑁               (1) 

𝑝 =
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

=  
1

1 + exp(− ∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

 

where 𝑝 is the probability of the “outcome of interest” and the ratio 
𝑝

1−𝑝
 is called the odds 

(Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & Nelder, 1989). 

 

       2.2.1.1 Maximum likelihood estimation of parameters 

 

The goal of logistic regression is to estimate 𝐾 + 1 unknown parameters 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 

in Equation (1). This is achieved using maximum likelihood estimation which entails 

finding the set of parameters for which the probability of the observed data is greatest. 

Since each 𝑦𝑖 represents a binomial count of 𝑖𝑡ℎpopulation, then, the joint probability 

mass function (likelihood function) of the outcome variable 𝒀 is  

𝐿(𝜷|𝒚) = ∏ (
𝑛𝑖

𝑦𝑖
) 𝑝𝑦𝑖(1 − 𝑝)𝑛𝑖−𝑦𝑖

𝑁

𝑖=1

                                                    (2) 
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where 𝑁 is the sample size. For each population, there are (
𝑛𝑖

𝑦𝑖
) different ways to arrange 

𝑦𝑖 successes from among 𝑛𝑖 trials. Since the probability of a success for any one of the 𝑛𝑖 

trials is 𝑝, then, the probability of 𝑦𝑖 successes is 𝑝𝑦𝑖. Likewise, the probability of 𝑛𝑖 − 𝑦𝑖 

failures is (1 − 𝑝)𝑛𝑖−𝑦𝑖. 

 

The maximum likelihood estimates are the values for 𝜷 that maximize the likelihood 

function in Equation (2). The critical points of a function (maxima and minima) occur 

when the first derivative equals 0. If the second derivative evaluated at that point is less 

than zero, then the critical point is a maximum. However, attempting to take the 

derivative of Equation (2) with respect to 𝜷 is a difficult task due to the complexity of 

multiplicative terms. So, a log-likelihood function is used (Czepiel, 2016; Kutner et al., 

2004; Kutner et al., 2005; McCullagh & Nelder, 1989). 

 

The term (
𝑛𝑖

𝑦𝑖
) in Equation (2) does not include 𝑝, so it is a constant that can be ignored. 

After rearranging terms, Equation (2) becomes 

𝐿(𝜷|𝒚) = ∏ (
𝑝

1 − 𝑝
)

𝑦𝑖

(1 − 𝑝)𝑛𝑖 .

𝑁

𝑖=1

                               (3) 

 Substituting the relation 

𝑝

1 − 𝑝
= exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗)  

and 

𝑝 =
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)
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in the first and second term, respectively, of Equation (3) yields 

𝐿(𝜷|𝒚) = ∏ (exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

𝑦𝑖

(1 −
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

)

𝑛𝑖

.

𝑁

𝑖=1

           (4) 

Replacing 1 in the second bracket of Equation (4) by 
1+exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1+exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

 and simplifying 

yields 

𝐿(𝜷|𝒚) = ∏ exp (𝑦𝑖 ∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) (1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

−𝑛𝑖

.                   (5) 

𝑁

𝑖=1

 

Equation (5) is the kernel of the likelihood function to maximize. However, it is still 

difficult to differentiate (Czepiel, 2016; Kutner et al., 2005; McCullagh & Nelder, 1989). 

However, since the logarithm is a monotonic function, any maximum of the likelihood 

function will also be a maximum of the log-likelihood function and vice versa. Thus, 

taking the natural logarithm of Equation (5) yields the log-likelihood function as 

𝑙(𝜷) = ∑ 𝑦𝑖 (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) − 𝑛𝑖 ⋅ log (1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

𝑁

𝑖=1

.                       (6) 

The first-order partial derivative of Equation (6) with respect to each 𝛽𝑗 is found as 

𝜕𝑙(𝜷)

𝜕𝛽𝑗
= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙
𝜕

𝜕𝛽𝑗
(1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))                        

= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙ exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) ∙
𝜕

𝜕𝛽𝑗
(∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) 

= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙ 𝑥𝑖𝑗                                                             
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= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖𝑝𝑥𝑖𝑗 .                                                                                               (7) 

Using Newton-Raphson method to determine the critical values of the derivative of the 

log-likelihood function, the values of the estimates for 𝜷 are obtained by setting each of 

the 𝐾 + 1 equations in the derivative of the log-likelihood function in Equation (7) to 

zero and solving for each 𝛽𝑗 (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Each such 

solution specifies a critical point i.e., either a maximum or a minimum. The critical point 

will be a maximum if the matrix (Hessian matrix) of second-order partial derivatives is 

negative definite. That is, if every element on the diagonal of the matrix is less than zero. 

It is formed by differentiating each of the 𝐾 + 1 equations in Equation (7) a second time 

with respect to each element of 𝜷 denoted by 𝛽𝑗′ . The general form of the matrix of 

second-order partial derivatives is  

 

𝜕2𝑙(𝜷)

𝜕𝛽𝑗𝜕𝛽𝑗′
=

𝜕

𝜕𝛽𝑗′
(∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖𝑝𝑥𝑖𝑗)                                           

=
𝜕

𝜕𝛽𝑗′
(∑ −𝑛𝑖𝑝𝑥𝑖𝑗

𝑁

𝑖=1

)                                       

= − ∑ 𝑛𝑖𝑥𝑖𝑗

𝜕

𝜕𝛽𝑗′
(

exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

)

𝑁

𝑖=1

 

= − ∑ 𝑛𝑖𝑥𝑖𝑗𝑝(1 − 𝑝)

𝑁

𝑖=1

𝑥𝑖𝑗′ .                             
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which is negative definite (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Therefore, the 

estimates of 𝜷 obtained by setting Equation (7) to zero maximize the log-likelihood 

function in Equation (6) and hence maximize the likelihood function in Equation (2). 

 

               2.2.1.2 Odds ratio and interpretation 

The most common interpretable measure of effect from logistic regression model is the 

odds ratio. For example, considering a logistic regression model given in Equation (1), 

the odds of having acute respiratory distress given a particular predictor variable are 

𝑃(𝑌𝑖 = 1|𝑋𝑖)

1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖)
.                                               

In order to obtain the effect of a one-unit increase in the predictor variable on the 

outcome of interest, a measure known as odds ratio is used and it is calculated as follows:  

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =

𝑃(𝑌𝑖 = 1|𝑋𝑖 + 1)
1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖 + 1)⁄

𝑃(𝑌𝑖 = 1|𝑋𝑖)
1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖)

⁄
= 𝑒𝛽𝑗            𝑗 = 0, 1, … , 𝐾. 

That is, for a one-unit increase in the predictor variable 𝑋𝑖, we expect 𝑒𝛽𝑗 times odds of 

obtaining the outcome of interest (having acute respiratory distress).  

 

2.2.2 Multinomial logistic regression model 

In a multinomial logistic regression model, the response variable has three or more 

categories and there is no natural ordering among these categories. An example, in 

medical research, could be predicting the type of disease a patient has, among three 

diseases, namely; diabetes, hypertension and renal failure based on age and gender. The 

binary logistic model is therefore a special case of the multinomial logistic regression 
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model. The link function is the generalized logit and the random component is the 

multinomial distribution. The model differs from the standard logistic model in that the 

comparisons are all estimated simultaneously within the same model (Czepiel, 2016; 

Kutner et al., 2004). 

 

The key assumptions of a multinomial logistic regression model are as follows: 

1. There should be a linear relationship between the log-odds and the predictor 

variables. 

2. The model assumes that there are no extreme outliers or influential observations 

in the dataset. 

3. Cases should be independent. 

4. There should be no multicollinearity between the independent variables (Czepiel, 

2016; Kutner et al., 2004). 

Let 𝐽 represent the number of discrete categories of the outcome variable. Consider a 

random variable 𝒀 that can take on one of 𝐽 possible values. If each observation is 

independent, then each 𝑌𝑖 is a multinomial random variable. The column vector 𝒏 

contains elements 𝑛𝑖 which represent the number of observations in population 𝑖 and that 

∑ 𝑛𝑖 = 𝑀𝑁
𝑖=1 , the total sample size (Czepiel, 2016; Kutner et al., 2004). 

 

Since each observation consist one of 𝐽 possible values for the outcome variable 𝒀, let 𝒚 

be a matrix with 𝑁 rows and 𝐽 − 1 columns. For each population, 𝑦𝑖𝑗 represents the 

observed counts of the 𝑗𝑡ℎvalue of 𝑌𝑖. Also, 𝝅 is a matrix with 𝑁 rows and 𝐽 − 1 columns 

where each element 𝜋𝑖𝑗 is the probability of observing the 𝑗𝑡ℎ value of the response 
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variable for any given observation in the 𝑖𝑡ℎpopulation (Czepiel, 2016; Kutner et al., 

2004). The design matrix of predictor variables 𝑿 contains 𝑁 rows and 𝐾 + 1 columns 

where 𝐾 is the number of predictor variables. Let 𝜷 be a matrix with 𝐾 + 1 rows and 𝐽 −

1 columns. For the multinomial logistic regression model, the linear component is 

equated to the log of the odds of a 𝑗𝑡ℎ observation compared to the 𝑏𝑡ℎ observation (the 

baseline category). The model can then be written as 

log (
𝜋𝑖𝑗

𝜋𝑖𝑏
) = log (

𝜋𝑖𝑗

1 − ∑ 𝜋𝑖𝑗
𝐽−1
𝑗=1

) = ∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

                                (8) 

for 𝑖 = 1, 2, … , 𝑁 and 𝑗 = 1, 2, … , 𝐽 − 1. 

Solving Equation (8) for 𝜋𝑖𝑗 and 𝜋𝑖𝑏, respectively, yields 

𝜋𝑖𝑗 =
exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾
𝑘=0 )

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

                          𝑗 < 𝐽 

and  

𝜋𝑖𝑏 =
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

.                                    

 

       2.2.2.1 Maximum likelihood estimation of parameters 

For each population, the outcome variable follows a multinomial distribution with 𝐽 

levels. That is, the joint probability mass function is  

𝑓(𝒚|𝜷) = ∏ [
𝑛𝑖!

∏ 𝑦𝑖𝑗!𝐽
𝑗=1

∙ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗

𝐽

𝑗=1

]

𝑁

𝑖=1

.                                        (9) 
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The factorial terms in Equation (9) do not contain any terms with 𝜋𝑖𝑗 as such they are 

treated as constants (Czepiel, 2016; Kutner et al., 2004). Therefore, the kernel of the 

likelihood function for multinomial logistic regression model is 

𝐿(𝜷|𝒚) = ∏ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗

𝐽

𝑗=1

.

𝑁

𝑖=1

                                                             (10) 

Replacing the 𝑏𝑡ℎterms, Equation (10) becomes 

𝐿(𝜷|𝒚) = ∏ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗 ∙ 𝜋
𝑖𝑏

𝑛𝑖−∑ 𝑦𝑖𝑗
𝐽−1
𝑗=1

𝐽−1

𝑗=1

𝑁

𝑖=1

                              (11) 

which simplifies to 

𝐿(𝜷|𝒚) = ∏ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗 ∙
𝜋𝑖𝑏

𝑛𝑖

𝜋
𝑖𝑏

∑ 𝑦𝑖𝑗
𝐽−1
𝑗=1

𝐽−1

𝑗=1

𝑁

𝑖=1

                                               

= ∏ ∏ 𝜋
𝑖𝑗

𝑦𝑖𝑗 ∙
𝜋𝑖𝑏

𝑛𝑖

∏ 𝜋
𝑖𝑏

𝑦𝑖𝑗𝐽−1
𝑗=1

𝐽−1

𝑗=1

𝑁

𝑖=1

.                     (12) 

Grouping together the terms that are raised to the 𝑦𝑖𝑗 power in Equation (12) gives 

𝐿(𝜷|𝒚) = ∏ ∏ (
𝜋𝑖𝑗

𝜋𝑖𝑏
)

𝑦𝑖𝑗

∙ 𝜋𝑖𝑏
𝑛𝑖

𝐽−1

𝑗=1

𝑁

𝑖=1

.                                        (13) 

Since 

𝜋𝑖𝑗

𝜋𝑖𝑏
= exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)                                            (14) 

and  

𝜋𝑖𝑏 =
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

,                          (15) 
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substitute Equation (14) and (15) in the first and second terms, respectively, of Equation 

(13) to get 

𝐿(𝜷|𝒚) = ∏ ∏ (exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

))

𝑦𝑖𝑗𝐽−1

𝑗=1

𝑁

𝑖=1

∙ (
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

)

𝑛𝑖

                                     

= ∏ ∏ exp (𝑦𝑖𝑗 ∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)

𝐽−1

𝑗=1

𝑁

𝑖=1

∙ (1 + ∑ exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)

𝐽−1

𝑗=1

)

−𝑛𝑖

.                  (16) 

Taking the natural log of Equation (16) gives the log-likelihood function as 

𝑙(𝜷) = ∑ ∑ (𝑦𝑖𝑗 ∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)

𝐽−1

𝑗=1

𝑁

𝑖=1

− 𝑛𝑖 log (1 + ∑ exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)

𝐽−1

𝑗=1

).                              (17) 

The goal is to find the values of 𝜷 which maximise Equation (17). This will be done 

using Newton-Raphson method which involves calculating the first and second-order 

partial derivatives of the log-likelihood function (Czepiel, 2016; Hossain et al, 2014; 

Kutner et al., 2004; Rasha, 2021). The first-order partial derivative of Equation (17) is  

𝜕𝑙(𝜷)

𝜕𝛽𝑘𝑗
= ∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

∙
𝜕

𝜕𝛽𝑘𝑗
(1 + ∑ exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

)

𝐽−1

𝑗=1

)              

= ∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

∙ exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

) ∙
𝜕

𝜕𝛽𝑘𝑗
(∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

) 



24 

 

= ∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

∙ exp (∑ 𝑥𝑖𝑘𝛽𝑘𝑗

𝐾

𝑘=0

) ∙ 𝑥𝑖𝑘                             

= ∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

− 𝑛𝑖𝜋𝑖𝑗𝑥𝑖𝑘.                                                                                                         (18) 

There are (𝐽 − 1) ∙ (𝐾 + 1) equations in Equation (18) which are set equal to zero and 

solved for each 𝛽𝑘𝑗. The general form of the matrix of second-order partial derivatives is 

given by 

𝜕2𝑙(𝜷)

𝜕𝛽𝑘𝑗𝜕𝛽𝑘′𝑗′
=

𝜕

𝜕𝛽𝑘′𝑗′
(∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

− 𝑛𝑖𝜋𝑖𝑗𝑥𝑖𝑘) =  
𝜕

𝜕𝛽𝑘′𝑗′
(∑ −𝑛𝑖𝜋𝑖𝑗𝑥𝑖𝑘

𝑁

𝑖=1

)                     

= − ∑ 𝑛𝑖𝑥𝑖𝑘

𝑁

𝑖=1

𝜕

𝜕𝛽𝑘′𝑗′
(

exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )

1 + ∑ exp(∑ 𝑥𝑖𝑘𝛽𝑘𝑗
𝐾
𝑘=0 )𝐽−1

𝑗=1

)                

= − ∑ 𝑛𝑖𝑥𝑖𝑘

𝑁

𝑖=1

𝜋𝑖𝑗(1 − 𝜋𝑖𝑗)𝑥𝑖𝑘′ ,                                 𝑓𝑜𝑟 𝑗′ = 𝑗 

which is negative definite (Czepiel, 2016; Hossain et al, 2014; Kutner et al., 2004; Rasha, 

2021). Therefore, the estimates of 𝜷 obtained by setting Equation (18) to zero maximize 

the log-likelihood function in Equation (17) and hence maximize the likelihood function 

in Equation (10). 

 

       2.2.2.2 Odds ratio and interpretation 

Odds ratios for each coefficient (for predicting the difference of one category response 

from the baseline category) are computed as    

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =

𝑃(𝑌𝑖 = 𝑗|𝑥𝑖 + 1)
𝑃(𝑌𝑖 = 𝑏|𝑥𝑖 + 1)⁄

𝑃(𝑌𝑖 = 𝑗|𝑥𝑖)
𝑃(𝑌𝑖 = 𝑏|𝑥𝑖)

⁄
=  𝑒𝛽𝑘𝑗 
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and represent the odds of increase (or decrease) for category 𝑗 compared with the baseline 

category for each unit increase in the predictor variable 𝑥𝑖. 

 

2.2.3 Ordinal logistic regression model 

An ordinal logistic regression is used to predict an ordinal outcome variable given one or 

more predictor variables. In ordinal logistic regression model, the outcome variable has 

three or more categories. Unlike, multinomial logistic regression model, there is ordering 

among categories in ordinal logistic regression model (Abreu et al., 2008; Hardin & 

Hilbe, 2018). An example, in medical research, could be predicting the level of pain (low, 

mild, high) one hour after taking a particular type of pain-relieving drug. Other ordered 

categories include; tumour stage (local, regional, distant), disability severity (none, mild, 

moderate, severe), Likert items (strongly disagree, disagree, agree, strongly agree), 

weight status (underweight, normal, overweight, obese), among others. 

 

An ordinal logistic regression model is based on the following key assumptions: 

1. The outcome variable is measured on an ordinal scale.  

2. One or more of the predictor variables are either continuous, categorical or 

ordinal.  

3. There is no multicollinearity. There is no correlation between two or more 

predictor variables.  

4. The response is determined as proportional odds. An ordinal outcome with three 

or more categories, the odds ratio for the logistic model represents the odds of the 

higher category as compared to all lower categories combined. In other words, it 
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is a cumulative odds ratio representing the increased likelihood to the next 

highest category relative to the lower categories for each unit increase in the 

predictor (Abreu et al., 2008; Hardin & Hilbe, 2018). 

Let 𝑦𝑖 denote the response outcome category for subject 𝑖. That is, 𝑦𝑖 = 𝑗 means that the 

response category for that particular subject is 𝑗, where 𝑗 = 1, 2, … , 𝑐. 

The cumulative probabilities are modelled as 

𝑃(𝑦𝑖 ≤ 𝑗) = 𝜋𝑖1 + 𝜋𝑖2 + ∙∙∙  + 𝜋𝑖𝑗 ,                    𝑗 = 1, 2, … , 𝑐 

where 𝜋𝑖𝑗is the probability of subject 𝑖 to choose category 𝑗. Also 

𝑃(𝑌𝑖 ≤ 𝑗) =
exp(𝛼𝑗 + 𝒙𝑖

𝑇𝜷)

1 + exp(𝛼𝑗 + 𝒙𝑖
𝑇𝜷)

,               𝑗 = 1, 2, … , 𝑐 − 1               (19) 

is a proportional odds model where 𝛼𝑗 is the intercept for category 𝑗, 𝒙𝑖
𝑇is a vector of 

predictor variables and 𝜷 is a vector of coefficients whose effects are the same for each 

cumulative logit. That is, the predictor variables have the same effect on the odds of all 

levels of the response. This is called the proportional-odds assumption or parallel-lines 

assumption (Abreu et al., 2008; Hardin & Hilbe, 2018). 

Taking the logit transformation of both sides of Equation (19) yields cumulative logit link 

given by 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖 ≤ 𝑗)] = log [
𝑃(𝑌𝑖 ≤ 𝑗)

1 − 𝑃(𝑌𝑖 ≤ 𝑗)
] = log (

𝜋𝑖1 + 𝜋𝑖2 + ∙∙∙  + 𝜋𝑖𝑗

𝜋𝑖,𝑗+1 + ∙∙∙  + 𝜋𝑖𝑐
)       𝑗 = 1, 2, … , 𝑐. 

The cumulative logit link function is, therefore, given by 

log [
𝑃(𝑌𝑖 ≤ 𝑗)

1 − 𝑃(𝑌𝑖 ≤ 𝑗)
] = 𝛼𝑗 + 𝒙𝑖

𝑇𝜷,                    𝑗 = 1, 2, … , 𝑐 − 1.  
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2.2.3.1 Maximum likelihood estimation of parameters 

Since 𝑃(𝑌𝑖 ≤ 𝑗) = 𝐹(𝛼𝑗 + 𝒙𝑖
𝑇𝜷), the likelihood function is given by 

𝐿(𝛼, 𝛽) =  ∏ (∏(𝜋𝑖𝑗)𝑦𝑖𝑗

𝑐

𝑗=1

)

𝑁

𝑖=1

= ∏ (∏[𝑃(𝑌𝑖 ≤ 𝑗) − 𝑃(𝑌𝑖 ≤ 𝑗 − 1)]𝑦𝑖𝑗

𝑐

𝑗=1

)

𝑁

𝑖=1

 

where 𝑁 is the total number of subjects (Abreu et al., 2008; Hardin & Hilbe, 2018). The 

log-likelihood function is given by 

𝑙(𝛼, 𝛽) = ∑ ∑ 𝑦𝑖𝑗 log[𝐹(𝛼𝑗 + 𝒙𝑖
𝑇𝜷) − 𝐹(𝛼𝑗−1 + 𝒙𝑖

𝑇𝜷)]

𝑐

𝑗=1

𝑁

𝑖=1

.                (20) 

The Newton-Raphson method for estimating the parameters is used to determine the roots 

of the derivative of the log-likelihood function (Czepiel, 2016). The first derivatives of 

Equation (20) with respect to 𝛼𝑗 and 𝛽𝑘 are, respectively, given as 

𝜕𝑙

𝜕𝛽𝑘
= ∑ ∑ 𝑦𝑖𝑗𝑥𝑖𝑘

𝑓(𝛼𝑗 + 𝒙𝑖
𝑇𝜷) − 𝑓(𝛼𝑗−1 + 𝒙𝑖

𝑇𝜷)

𝐹(𝛼𝑗 + 𝒙𝑖
𝑇𝜷) − 𝐹(𝛼𝑗−1 + 𝒙𝑖

𝑇𝜷)

𝑐

𝑗=1

𝑁

𝑖=1

                     (21) 

and 

 

𝜕𝑙

𝜕𝛼𝑗
= ∑ {

𝑦𝑖𝑘𝑓(𝛼𝑗 + 𝒙𝑖
𝑇𝜷)

𝐹(𝛼𝑗 + 𝒙𝑖
𝑇𝜷) − 𝐹(𝛼𝑗−1 + 𝒙𝑖

𝑇𝜷)

𝑁

𝑗=1

−
𝑦𝑖,𝑗+1𝑓(𝛼𝑘 + 𝒙𝑖

𝑇𝜷)

𝐹(𝛼𝑗+1 + 𝒙𝑖
𝑇𝜷) − 𝐹(𝛼𝑗 + 𝒙𝑖

𝑇𝜷)
}.         (22) 

The values of interest 𝛼𝑗 and 𝛽𝑘 are obtained by setting the first derivatives in Equations 

(21) and (22) to zero and solving. Each such root specifies a critical point (either a 

maximum or a minimum). The critical point will be a maximum if the matrix of second-

order partial derivatives is negative definite (Golub & Van Loan, 1996). It is formed by 
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differentiating Equations (21) and (22) a second time with respect to each element 𝛼 and 

𝛽 denoted by 𝛼𝑗 and 𝛽𝑘 (Abreu et al., 2008; Hardin & Hilbe, 2018). 

 

2.2.3.2 Cumulative odds ratio  

For subject 𝑖, if 𝒙𝑖 changes from 𝒂 to 𝒃, then 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒃)] − 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒂)]

= log [

𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒃)
𝑃(𝑌𝑖 > 𝑗|𝑥𝑖 = 𝒃)⁄

𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒂)
𝑃(𝑌𝑖 > 𝑗|𝑥𝑖 = 𝒂)⁄

] 

 =  (𝑏 − 𝑎)𝑇𝜷 

 

That is, the cumulative odds ratio is given by 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  

𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒃)
𝑃(𝑌𝑖 > 𝑗|𝑥𝑖 = 𝒃)⁄

𝑃(𝑌𝑖 ≤ 𝑗|𝑥𝑖 = 𝒂)
𝑃(𝑌𝑖 > 𝑗|𝑥𝑖 = 𝒂)⁄

= 𝑒(𝑏−𝑎)𝑇𝜷. 

 

2.3 Diagnostic Accuracy 

 

Diagnostic accuracy measures the ability of a predictive model to detect a disease when it 

is present and to detect the absence of a disease when it is absent. This discriminative 

ability is assessed by measures of diagnostic accuracy such as sensitivity, specificity, 

positive predictive values, negative predictive values and area under the Receiver 

Operating Characteristic (ROC) curve (Šimundić, 2009). These are discussed in the 

following sections. 
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        2.3.1 Sensitivity and specificity 

 

In 1947, American biostatistician Jacob Yerushalmy coined the words “sensitivity” and 

“specificity” (Yerushalmy, 1947). An ideal predictive model could totally distinguish 

between those who have an illness and those who do not. Perfect predicted results that are 

above a certain threshold are always indicative of the disease, while those that are below 

the threshold are always negative for the disease. Unfortunately, such a flawless 

prediction does not exist in reality, and as a result, prediction processes can only partially 

distinguish between those who have disease and those who do not. Since patients without 

disease might occasionally have above threshold readings of a certain parameter of 

interest, then, values above the threshold are not always suggestive of a disease. This 

implies a false positive (FP) result. Similarly, patients with the disease may present 

readings of the parameter of interest below threshold. This implies a false negative (FN) 

result (Šimundić, 2009). In light of parameter values of interest, the threshold divides the 

population of investigated participants with and without disease into four categories. The 

model prediction results are compared with the gold standard results i.e., assumed 

accurate results, as presented in a confusion matrix in table 1. 

 

Table 1:  A 2 × 2 confusion matrix 

                                 Gold standard 

Disease No disease 

Model 

classification 

Positive TP FP 

Negative FN TN 
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In table 1, true positive (TP) represents a positive model predicted result given that the 

subjects have the disease. False positive (FP) represents a positive model predicted result 

given that the subjects do not have the disease. True negative (TN) represents a negative 

model predicted result given that the subjects do not have the disease and false negative 

(FN) represents a negative model predicted result given that the subjects have the disease 

(Šimundić, 2009; Swift et al., 2020). 

 

Sensitivity refers to the probability that a predictive model will return a positive result 

when a disease is actually present. Sensitivity is the percentage or proportion of patients 

who are truly positive for the disease among all patients who have the disease. From table 

1, we calculate sensitivity as 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

or if positive model predicted result is denoted by 𝑇 and having a disease on the gold 

standard is denoted by 𝐷, then 

Sensitivity = 𝑃(𝑇|𝐷). 

Specificity refers to the probability that a predictive model will return a negative result 

when a disease is actually absent. Specificity is the percentage or proportion of subjects 

who are truly negative for the disease among all subjects who do not have the disease 

(Šimundić, 2009; Swift et al., 2020). From Table 1, we calculate specificity as 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

or if negative model predicted result is denoted by 𝑇̅ and not having a disease on the gold 

standard is denoted by 𝐷̅, then 
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Specificity = 𝑃(𝑇̅|𝐷̅). 

 

Remarks: 

i. A predictive model with high sensitivity will detect some individuals without the 

condition. The predictive model will identify everyone who has the condition as 

well as many people who do not. This is crucial if the condition's consequences 

for not treating it are severe and/or if there is a treatment that is readily 

available, highly effective, and has few negative side effects. However, for healthy 

people, this will lead to stress and unneeded follow-up. 

ii. A predictive model with high specificity will result in a high number of true 

negatives and smaller number of false positives. In this case, subjects identified as 

having a disease may be subjected to more testing. 

iii. The prevalence of the disease has no effect on sensitivity or specificity, therefore 

findings from one study might readily be applied to another context with a 

variable prevalence of the condition in the population. However, depending on 

the disease spectrum in the examined population, sensitivity and specificity can 

vary significantly. 

 

         2.3.2 Positive predictive value 

  

Positive predictive value refers to the percentage or proportion of patients with positive 

predicted results among all subjects with positive test results. From table 1, we have 

Positive predictive value =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 
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Positive predictive value is also defined as the probability of having a disease of interest 

in a patient with positive predicted result (Šimundić, 2009; Swift et al., 2020). 

Mathematically, 

Positive predictive value = 𝑃(𝐷|𝑇). 

 

       2.3.3 Negative predictive value  

 

Negative predictive value refers to the percentage or proportion of subjects with negative 

predicted results among all subjects with negative test results. From table 1, we have 

Negative predictive value =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
. 

Negative predictive value is also defined as the probability of not having a disease of 

interest in a subject with negative predicted result (Šimundić, 2009; Swift et al., 2020). 

Mathematically, 

Negative predictive value = 𝑃(𝐷̅|𝑇̅). 

 

Remarks:  

i. Predictive values are strongly influenced by the prevalence of the disease in the 

population under study. Because of this, predictive estimates from one study 

should not be used in a situation where the population's prevalence of the disease 

is different. 

ii. With an increase in the disease's prevalence in a population, the positive 

predictive value rises and the negative predictive value falls. 
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         2.3.4 Area Under ROC Curve (AUC)  

 

The Area Under the Curve (AUC) score is the area under the Receiver Operating 

Characteristic (ROC) curve, and it measures the ability of the predictive model to 

accurately predict classes i.e., a child having baseline acute respiratory distress on not. A 

ROC curve plots sensitivity against specificity at different possible classification 

thresholds (Šimundić, 2009; Swift et al., 2020). AUC is defined as the likelihood that the 

predictive model will give a higher probability to a random positive observation than to a 

random negative observation (Hanley & McNeil, 1982). The AUC score represents the 

predictive model's ability to accurately categorize classes on a scale of 0 to 1, with 1 

being the best and 0.5 being as good as random choosing. This is a measure used to 

assess the accuracy or performance of a predictive model (Šimundić, 2009; Swift et al., 

2020).  

 

To create a ROC curve, we plot specificity on the 𝑥-axis and sensitivity on the 𝑦-axis. 

The strength of a predictive model’s discriminative power is determined by examining 

the shape of a ROC curve and the area under the curve (Šimundić, 2009). The predictive 

model’s ability to distinguish between diseased and non-diseased individuals is improved 

by the curve's proximity to the upper-left corner and the size of the area under the curve. 

Table 2 describes the relationship between the area under the ROC curve and predictive 

model accuracy (Šimundić, 2009). 

 

Table 2: Area under the ROC curve and predictive model accuracy (Šimundić, 2009)  

AUC value Predictive model accuracy 
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0.9 ≤ AUC ≤ 1.0 Excellent 

0.8 ≤ AUC < 0.9 Very good 

0.7 ≤ AUC < 0.8 Good 

0.6 ≤ AUC < 0.7 Sufficient 

0.5 ≤ AUC < 0.6 Bad 

< 0.5 Model not useful 

 

Area under the ROC curve is a generic indicator of predictive model accuracy that is 

essential for overall evaluation and for comparing the results of two or more predictive 

models. The area under each of the two ROC curves can be compared to determine which 

test is more suited to separating the diseased individuals from the non-diseased (Hanley 

& McNeil, 1982; Šimundić, 2009; Swift et al., 2020). 

 

2.4 Classification Tree 

 

Techniques such as multiple linear regression can yield reliable predictive models when 

there is a linear relationship between a set of predictor variables and a response variable. 

On the other hand, non-linear approaches frequently result in more accurate models when 

there is a more complex relationship between a collection of predictor variables and a 

response. One such technique is classification and regression trees (CART), which 

constructs decision trees that predict the value of a response variable based on a 

collection of predictor variables. Regression trees are constructed when the response 

variable is continuous. On the other hand, classification trees are constructed when the 
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response variable is categorical (Flom, 2018; Loh, 2011). This study will construct a 

classification tree since the outcome variable is categorical. 

 

Classification tree is obtained by iteratively partitioning the data space and fitting a basic 

prediction model within each partition, leading to a decision tree as a graphical 

representation of the partitioning (Flom, 2018; Loh, 2011). Classification trees are used 

when the dependent variable can have a finite number of unordered values and the 

prediction error is expressed in terms of the cost of misclassification. Graphically, we 

begin by grouping together all of the observations and then divide it into two groups by 

selecting the best predictor value for the split, which results in two nodes. Then, the 

process is repeated until a full tree is obtained. The full tree may, sometimes, overfit the 

data. Therefore, the best tree is obtained by pruning (Flom, 2018; Loh, 2011). 

 

         2.4.1 Classification tree algorithm 

 

In a classification problem, there is a training sample of 𝑛 observations on a response or 

class variable 𝑌 and 𝑝 predictor variables, 𝑋1, 𝑋2, … , 𝑋𝑝. The goal is to find a model for 

predicting the values of 𝑌 from new 𝑋 values (Loh, 2011). A simple tree structure is 

defined as 

𝑦(𝑥1, 𝑥2) = {

𝑦1 𝑖𝑓 𝑥1 ≤ 𝑠1

𝑦2 𝑖𝑓 𝑥1 > 𝑠1 𝑎𝑛𝑑 𝑥2 ≤ 𝑠2

𝑦3 𝑖𝑓 𝑥1 > 𝑠1 𝑎𝑛𝑑 𝑥2 > 𝑠2.
 

The objective of a classification tree is to estimate a binary tree structure. This is 

achieved by performing three algorithms, namely; tree growing: step-optimal recursive 

partition, tree pruning and obtaining the honest tree. Tree pruning and obtaining the 
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honest tree are meant to minimise overfitting i.e., growing trees with no external validity 

(Mora, 2019). 

 

Tree growing requires training or learning sample. At iteration 𝑖 with tree structure 𝑇𝑖, 

consider all terminal nodes 𝑡∗𝑇𝑖. In a classification tree, we let 𝑖(𝑇𝑖) to be an overall 

impurity measure using gini or entropy index. The best split at iteration 𝑖 identifies the 

terminal node and split criterion that maximizes 

𝑖(𝑇𝑖) − 𝑖(𝑇𝑖+1). 

Recursive partitioning ends with the largest possible tree, 𝑇𝑚𝑎𝑥 where there are no nodes 

to split or the number of observations reach a lower limit also referred to as splitting rule. 

In this regard,  𝑇𝑚𝑎𝑥 will usually be too complex (overfit) because it has no external 

validity and some terminal nodes should be aggregated (Mora, 2019). Besides, a more 

simplified structure will normally lead to more accurate estimates since the number of 

observations in each terminal node grows as aggregation takes place. In order to avoid 

overfitting, classification tree algorithm identifies a sequence of nested trees that results 

from recursive aggregation of nodes from 𝑇𝑚𝑎𝑥 with a clustering procedure. For a given 

value 𝛼, let 𝑅(𝛼, 𝑇) = 𝑅(𝑇) + 𝛼|𝑇| where |𝑇| denotes the number of terminal nodes, or 

complexity, of tree 𝑇 and 𝑅(𝑇) is the misclassification rate (Mora, 2019). The optimal 

tree for a given 𝛼, 𝑇(𝛼), minimises 𝑅(𝛼, 𝑇) within the set of subtrees of 𝑇𝑚𝑎𝑥. Pruning 

identifies a sequence of real positive numbers {𝛼0, 𝛼1, … , 𝛼𝑀} such that 𝛼𝑗 < 𝛼𝑗+1 and  

𝑇𝑚𝑎𝑥  ≡ T(𝛼0) → T(𝛼1) → T(𝛼2) → ⋯ → {𝑟𝑜𝑜𝑡}. 

Out of the sequence of optimal trees, {𝑇(𝛼𝑗)}
𝑗
, 𝑇𝑚𝑎𝑥 has lowest 𝑅(𝑇) in the learning 

sample by construction and 𝑅(∙) increases with 𝛼 (Mora, 2019).  
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The honest tree algorithm chooses the simplest tree that minimizes  

𝑅(𝑇) + 𝑠 × 𝑆𝐸(𝑅(𝑇)),     𝑠 ≥ 0. 

With partitioning into a learning and a test sample, on one hand, 𝑅(𝑇) and 𝑆𝐸(𝑅(𝑇)) are 

obtained using the test sample. On the other hand, with V-fold cross validation, the 

sample is randomly partitioned 𝑉 times into a learning and a test sample. The measures 

𝛼𝑖, 𝑅(𝑇) and 𝑆𝐸(𝑅(𝑇)) are obtained through averaging of results in the 𝑉 partitions 

(Mora, 2019). 

 

2.5 Review of studies that applied binary logistic regression model 

 

Marsh et al. (1995) studied 1844 children (mean age, 26.4 months) with a primary 

diagnosis of malaria who were admitted in the paediatric ward of Kilifi District Hospital 

in Kenya. The primary goal of the study was to determine indicators of life-threatening 

malaria in African children. It was found that the mortality rate was 3.5% (95% CI of 2.7 

- 4.3%), and 84% of the deaths occurred within 24 hours of admission. The study 

employed a binary logistic regression model in order to determine key prognostic 

indicators of death (outcome variable) from malaria. Four indicators were established, 

namely; respiratory distress (relative risk, 3.9; 95% CI, 2.0-7.7), impaired consciousness 

(relative risk, 3.3; 95% CI, 1.6-7.0), hypoglycaemia (relative risk, 3.3; 95% CI, 1.6-6.7), 

and jaundice (relative risk, 2.6; 95% CI, 1.1-6.3). The 54 out of 64 children who died 

were those with respiratory distress (𝑛 = 251; case fatality rate, 13.9%) or impaired 

consciousness (𝑛 = 336; case fatality rate, 11.9%), or both.  
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Mzumara et al. (2021) used binary univariable and multivariable logistic regression 

models to identify prognostic factors for severe metabolic acidosis and uraemia in 5425 

children from nine African countries who had severe falciparum malaria. The results 

indicated the prognostic features of severe metabolic acidosis were deep breathing (OR: 

3.94, CI 2.51-6.2), hypoglycaemia (OR:5.16, CI 2.74-9.75), coma (OR: 1.72 CI 1.17-

2.51), respiratory distress (OR: 1.46, CI 1.02-2.1) and prostration (OR: 1.88, CI 1.35-

2.59). Prognostic features associated with uraemia were coma (3.18, CI 2.36-4.27), 

prostration (OR: 1.78 CI 1.37-2.30), decompensated shock (OR: 1.89, CI 1.31-2.74), 

black water fever (CI 1.58, CI 1.09-2.27), jaundice (OR: 3.46 CI 2.21-5.43), severe 

anaemia (OR: 1.77, CI 1.36-2.29) and hypoglycaemia (OR: 2.77, CI 2.22-3.46). Results 

indicated that the strongest predictors of severe metabolic acidosis were hypoglycaemia 

and deep breathing. On the other hand, the strongest predictors of uraemia were jaundice, 

coma and hypoglycaemia. 

 

Xu et al. (2023) developed a prediction model for predicting the risk of acute respiratory 

distress syndrome in sepsis patients. This retrospective cohort study recruited a total of 

16,523 sepsis patients who were randomly divided into the training and testing sets. The 

outcome of interest was the occurrence of ARDS for ICU patients with sepsis. Univariate 

and multivariate logistic regression analyses were used in the training set to identify the 

factors that were associated with ARDS risk, which were adopted to establish the 

nomogram. The receiver operating characteristic and calibration curves were used to 

assess the predictive performance of nomogram. Results showed that a total of 2422 

(20.66%) sepsis patients resulted in ARDS. It was found that that body mass index, 
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respiratory rate, urine output, partial pressure of carbon dioxide, blood urea nitrogen, 

vasopressin, continuous renal replacement therapy, ventilation status, chronic pulmonary 

disease, malignant cancer, liver disease, septic shock and pancreatitis might be predictors. 

The area under the curve of developed model were 0.811 (95% CI 0.802–0.820) in the 

training set and 0.812 (95% CI 0.798–0.826) in the testing set.  

 

There has been an increase in the number of human adenovirus (HAdV)-related 

pneumonia cases in immunocompetent adults and acute respiratory distress syndrome in 

these patients is the predominant cause of HAdV-associated fatality rates. Based on this 

background, Lin et al. (2023) developed “a prediction model for acute respiratory distress 

syndrome in immunocompetent adults with adenovirus-associated pneumonia”. The 

study used data from immunocompetent adults with HAdV-pneumonia between June 

2018 and May 2022 in ten tertiary general hospitals in central China which was analysed 

retrospectively. The prediction model of HAdV-related ARDS was developed using 

multivariate stepwise logistic regression and visualized using a nomogram. Out of 102 

patients with adenovirus pneumonia, 41 (40.2%) developed ARDS. Overall, most 

patients were male (94.1%), the median age was 38.0 years. Results of a multivariate 

logistic regression model indicated that dyspnea, Sequential Organ Failure Assessment 

(SOFA) score, lactate dehydrogenase (LDH) and mechanical ventilation status were 

independent risk factors for the development of ARDS. Using these factors, a nomogram 

was established with an associated concordance statistic of 0.904 (95% CI 0.844–0.963). 

The nomogram was meant to help predict early HAdV-related ARDS. 
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Community-acquired pneumonia (CAP) is a global health concern due to its high rates of 

morbidity and mortality. Bacterial pathogens are common causes of CAP. It is one of the 

most common causes of acute respiratory distress syndrome (ARDS). In a quest to ensure 

early identification of the occurrence and effective prevention of ARDS in patients with 

bacterial pneumonia, Lv et al. (2024) did a study aimed at establishing a predictive model 

for ARDS in patients with bacterial pneumonia. The study used clinical data of 

hospitalized patients with bacterial pneumonia in Affiliated Huzhou Hospital of Zhejiang 

University School of Medicine from January 2022 to November 2022. The independent 

risk factors for ARDS in patients with bacterial pneumonia were determined by using 

univariate and multivariate binary logistic regression analyses. The nomogram was 

constructed to display the predictive model, and the receiver-operating characteristic 

curve was plotted to evaluate the predictive value of ARDS. This study included 254 

patients with bacterial pneumonia, of which 114 developed ARDS. The multivariate 

logistic regression analysis revealed that age (OR = 1.041, p = 0.003], heart rate (OR = 

1.020, p = 0.028), lymphocyte count (OR = 0.555, p = 0.033), white blood cell count (OR 

= 1.062, p = 0.033), bilateral lung lesions (OR = 7.352, p = 0.011) and pleural effusion 

(OR = 2.512, p = 0.002) were the independent risk factors for ARDS. The predictive 

model was constructed based on the six independent factors and it gave AUC value of 

0.794. It was concluded that the predictive model was beneficial to evaluate the disease 

progression in patients with bacterial pneumonia and identify ARDS. Also, the 

nomogram would help doctors predict the incidence of ARDS and conduct treatment as 

early as possible.  
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Malaria is still a pressing public health concern in the African region. There were 

257,950 paediatric deaths in Africa in 2019, accounting for 67.2% of all malaria-related 

deaths across the board (WHO, 2021). This equates to a daily death toll of almost 707 

children under the age of five (WHO, 2021). The prevalence is very high in Africa due to 

inadequate health care services and limited resources in health facilities. Literature has 

shown that there is a close association between malaria and the insurgence of acute 

respiratory distress. Several studies have been conducted focusing on determining risk 

factors associated with the development of acute respiratory distress in children 

worldwide so as to be able to develop preventative and early intervention measures. 

Prediction models have also been developed to predict the risk of developing acute 

respiratory distress in pneumonia, sepsis and trauma patients. However, no study has so 

far focused on developing a prediction model of baseline acute respiratory distress in 

African children who have severe falciparum malaria. For that reason, this study will 

embark on predicting baseline acute respiratory distress in African children who are 

diagnosed with severe malaria using statistical prediction models. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Study Design 

 

This is a secondary retrospective analysis of a multicenter, open-label ‘African Quinine-

Artesunate Malaria Trial’ (AQUAMAT) that was conducted from October 3, 2005, to 

July 14, 2010, among children (<15 years) who had been hospitalized for severe malaria. 

Eleven centres from nine African nations participated including; Mozambique, The 

Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the Democratic 

Republic of the Congo (Dondorp et al., 2010). Inclusion criteria for children under 15 

years old were a positive rapid diagnostic test for Plasmodium falciparum lactate 

dehydrogenase, clinical judgment of the admitting physician that the patient had severe 

malaria, and fully informed written consent from the patient or a guardian. Patients who 

had a positive malaria test and at least one of the WHO symptoms were considered to 

have severe malaria (Dondorp et al., 2010). Patients who had a compelling history of 

receiving parenteral quinine or an artemisinin derivative for more than 24 hours prior to 

admission were excluded from the study. 

 

The AQUAMAT recruited 5426 children with 2713 patients in the artesunate arm and 

2713 patients in the quinine arm (Dondorp et al., 2010; Mzumara et al., 2021). The 

participating countries and their corresponding number of subjects are as follows: 
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Mozambique (332, 12%), The Gambia (252, 9%), Ghana (218, 8%), Kenya (223, 8%), 

Tanzania (732, 27%), Nigeria (224, 8%), Uganda (330, 12%), Rwanda (192, 7%), and the 

Democratic Republic of the Congo (210, 8%). The main outcome measure of interest was 

to compare in-hospital mortality between treatments using intention-to-treat. Incidence of 

severe neurological problems and a combined outcome measure of mortality and severe 

persistent neurological sequelae were used as secondary outcome measures. The trial 

supported the use of parenteral artesunate in the treatment of Plasmodium falciparum in 

children worldwide (Dondorp et al., 2010).  

 

3.2 Variables 

 

           3.2.1 Outcome variable 

 

This study is aimed at predicting baseline acute respiratory distress in African children 

who have severe malaria. As such, the outcome variable of interest is baseline acute 

respiratory distress. This variable has binary outcomes (having baseline acute respiratory 

distress or not).   

 

         3.2.2 Predictor variables 

 

Studies of children who were admitted to hospitals with a primary diagnosis of malaria 

revealed that fatalities were mainly associated with respiratory distress and impaired 

consciousness among other minor factors (Marsh et al., 1995; Oduro et al., 2007; Shah et 

al., 2021). According to Dondorp et al. (2010), WHO signs of severe falciparum malaria 

are plasma base excess less than –3.3 mmol/L, Glasgow coma scale less than 11 of 15 or 
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Blantyre coma scale less than 3 of 5 in preverbal children, haemoglobin less than 50 g/L 

and parasitaemia greater than 100,000 parasites per 𝜇L, blood urea greater than 10 

mmol/L, compensated shock (capillary refill ≥ 3 or temperature gradient on legs, but no 

hypotension), decompensated shock, systolic blood pressure less than 70 mm Hg and 

cool peripheries, asexual parasitaemia more than 10%, visible jaundice and more than 

100,000 parasites per 𝜇L, plasma glucose less than 3 mmol/L and respiratory distress, 

defined as costal indrawing, use of  accessory muscles, nasal alar flaring, deep breathing, 

or severe tachypnoea.  

 

Based on literature findings on risk factors associated with acute respiratory distress, the 

Paediatric Acute Lung Injury Consensus Conference (PALICC) definition of Paediatric 

Acute Respiratory Distress Syndrome (PARDS) and WHO signs of severe falciparum 

malaria, the candidate demographic and clinical predictor variables for the outcome of 

interest (baseline acute respiratory distress), in this study, are patient age (years), sex, 

weight (kg), respiratory rate (per minute), systolic blood pressure (mmHg), diastolic 

blood pressure (mmHg), pneumonia, sepsis, symptomatic severe anaemia (severe pallor 

combined with respiratory distress), coma at admission (GCS ≤ 10, BCS ≤ 2), 

convulsions > 30 minutes, compensated shock (capillary refill ≥ 3 sec temperature 

gradient), decompensated shock (adults: systolic BP< 80 mmHg, children: systolic BP < 

70 mmHg), hyperparasitaemia (> 500 parasites per high powered field), severe acidosis: 

deep breathing, blood transfusion, mechanical ventilation, patient is currently treated for 

chronic illness, renal failure and severe prostration (not able to breastfeed < 6m, or able 

to sit > 6m).                                                            
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3.3 Statistical Analysis  

 

Data exploratory analysis and visualization was done using approaches like tables, 

histograms and bar graphs in order to gain insight into the data. Since the response 

variable of interest, in this study, is categorical with two possible outcomes, a binary 

logistic regression model is a reasonable predictive model in predicting baseline acute 

respiratory distress based on demographic and clinical predictor variables.  

 

3.3.1 Univariable binary logistic regression model 

 

To determine potential predictors of baseline acute respiratory distress, first a univariable 

binary logistic regression model was used. The model is given by 

log (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑋𝑖1                                             𝑖 = 1, 2, … , 𝑁 

𝑝(𝑌𝑖 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡|𝑥𝑖1) =
exp(𝛽0 + 𝛽1𝑋𝑖1)

1 + exp(𝛽0 + 𝛽1𝑋𝑖1)
=  

1

1 + exp(−(𝛽0 + 𝛽1𝑋𝑖1))
 

where 𝑝 is the probability of observing the outcome variable of interest (a patient having 

acute respiratory distress), 𝛽0 is the intercept, 𝛽1 is the coefficient which relates a 

response and a predictor variable and 𝑋𝑖1 is a predictor variable. 

 

Predictor variables and some patient demographics which were statistically significant, at 

5% level of significance, in the univariable model were included in the multivariable 

binary logistic regression model (predictive model) using forward stepwise approach. 

The multivariable binary logistic regression model is discussed below: 
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3.3.2 Multivariable binary logistic regression model 

 

Let 𝑌 be a column vector of length 𝑁 where each element 𝑌𝑖 is a random variable 

representing the number of successes for population 𝑖. Let the column vector 𝑦 contain 

elements 𝑦𝑖 representing the observed counts of the number of successes for each 

population. Let 𝑝 be a column vector of length 𝑁 with elements = 𝑃(𝑌𝑖 = 1) , i.e., the 

probability of “success” for any given observation in the 𝑖𝑡ℎ population. Suppose the 

outcome of interest 

𝑌𝑖 ∼ Binomial(𝑛, 𝑝) 

for a particular observation 𝑖, with a probability mass function 

𝑓(𝑦|𝛽) = (
𝑛
𝑦) 𝑝𝑦(1 − 𝑝)𝑛−𝑦 ,      for 𝑦 = 0, 1, 2, … , 𝑛. 

where 𝑛 is the number of trials. Then, a plausible link function is the logit given by  

𝑔(𝑝) = log (
𝑝

1 − 𝑝
). 

The linear component of the model contains the design matrix and the vector of 

parameters to be estimated (Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & 

Nelder, 1989). The design matrix of predictor variables 𝑿 is composed of 𝑁 rows and 

𝐾 + 1 columns, where 𝐾 is the number of predictor variables specified in the model. The 

parameter vector 𝜷 is a column vector of length 𝐾 + 1. There is one parameter 

corresponding to each of the 𝐾 columns of predictor variable settings in 𝑿, plus one 𝛽0, 

for the intercept. The logistic regression model equates the logit transform i.e., the log-

odds of the probability of a success, to the linear component as follows 
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log (
𝑝

1 − 𝑝
) = 𝑿𝑇𝜷 =  ∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗                 𝑖 = 1, 2, … , 𝑁               (23) 

𝑝(𝑌𝑖 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡|𝑥𝑖𝑗) =
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

=  
1

1 + exp(− ∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

. 

where 𝑝 is the probability of the “outcome of interest” and the ratio 
𝑝

1−𝑝
 is called the odds 

(Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & Nelder, 1989). 

 

       3.3.2.1 Maximum likelihood estimation of parameters 

 

The goal of logistic regression is to estimate 𝐾 + 1 unknown parameters 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑘 

in Equation (23). This is achieved using maximum likelihood estimation which entails 

finding the set of parameters for which the probability of the observed data is greatest. 

Since each 𝑦𝑖 represents a binomial count of 𝑖𝑡ℎpopulation, then, the joint probability 

mass function (likelihood function) of the outcome variable 𝒀 is  

𝐿(𝜷|𝒚) = ∏ (
𝑛𝑖

𝑦𝑖
) 𝑝𝑦𝑖(1 − 𝑝)𝑛𝑖−𝑦𝑖

𝑁

𝑖=1

                                                    (24) 

where 𝑁 is the sample size. For each population, there are (
𝑛𝑖

𝑦𝑖
) different ways to arrange 

𝑦𝑖 successes from among 𝑛𝑖 trials. Since the probability of a success for any one of the 𝑛𝑖 

trials is 𝑝, then, the probability of 𝑦𝑖 successes is 𝑝𝑦𝑖. Likewise, the probability of 𝑛𝑖 − 𝑦𝑖 

failures is (1 − 𝑝)𝑛𝑖−𝑦𝑖. 
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The maximum likelihood estimates are the values for 𝜷 that maximize the likelihood 

function in Equation (24). The critical points of a function (maxima and minima) occur 

when the first derivative equals 0. If the second derivative evaluated at that point is less 

than zero, then the critical point is a maximum. However, attempting to take the 

derivative of Equation (24) with respect to 𝜷 is a difficult task due to the complexity of 

multiplicative terms. So, a log-likelihood function is used (Czepiel, 2016; Kutner et al., 

2004; Kutner et al., 2005; McCullagh & Nelder, 1989). 

 

The term (
𝑛𝑖

𝑦𝑖
) in Equation (24) does not include 𝑝, so it is a constant that can be ignored. 

After rearranging terms, Equation (24) becomes 

𝐿(𝜷|𝒚) = ∏ (
𝑝

1 − 𝑝
)

𝑦𝑖

(1 − 𝑝)𝑛𝑖 .

𝑁

𝑖=1

                               (25) 

 Substituting the relation 

𝑝

1 − 𝑝
= exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗)  

and 

𝑝 =
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

 

in the first and second term, respectively, of Equation (25) yields 

𝐿(𝜷|𝒚) = ∏ (exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

𝑦𝑖

(1 −
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

)

𝑛𝑖

.

𝑁

𝑖=1

           (26) 
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Replacing 1 in the second bracket of Equation (26) by 
1+exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1+exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

 and simplifying 

yields 

𝐿(𝜷|𝒚) = ∏ exp (𝑦𝑖 ∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) (1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

−𝑛𝑖

.                   (27) 

𝑁

𝑖=1

 

Equation (27) is the kernel of the likelihood function to maximize. However, it is still 

difficult to differentiate (Czepiel, 2016; Kutner et al., 2005; McCullagh & Nelder, 1989). 

Since the logarithm is a monotonic function, any maximum of the likelihood function 

will also be a maximum of the log-likelihood function and vice versa. Thus, taking the 

natural logarithm of Equation (27) yields the log-likelihood function as 

𝑙(𝜷) = ∑ 𝑦𝑖 (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) − 𝑛𝑖 ⋅ log (1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))

𝑁

𝑖=1

.                       (28) 

The first-order partial derivative of Equation (28) with respect to each 𝛽𝑗 is found as 

𝜕𝑙(𝜷)

𝜕𝛽𝑗
= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙
𝜕

𝜕𝛽𝑗
(1 + exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗))                        

= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
1

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙ exp (∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) ∙
𝜕

𝜕𝛽𝑗
(∑ 𝑥𝑖𝑗

𝐾

𝑗=0

𝛽𝑗) 

= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖 ∙
exp(∑ 𝑥𝑖𝑗

𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

∙ 𝑥𝑖𝑗                                                             

= ∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖𝑝𝑥𝑖𝑗 .                                                                                               (29) 

Using Newton-Raphson method to determine the critical values of the derivative of the 

log-likelihood function, the values of the estimates for 𝜷 are obtained by setting each of 
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the 𝐾 + 1 equations in the derivative of the log-likelihood function in Equation (29) to 

zero and solving for each 𝛽𝑗 (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Each such 

solution specifies a critical point. The critical point will be a maximum if the matrix 

(Hessian matrix) of second-order partial derivatives is negative definite. That is, if every 

element on the diagonal of the matrix is less than zero. It is formed by differentiating 

each of the 𝐾 + 1 equations in Equation (29) a second time with respect to each element 

of 𝜷 denoted by 𝛽𝑗′ . The general form of the matrix of second-order partial derivatives is  

𝜕2𝑙(𝜷)

𝜕𝛽𝑗𝜕𝛽𝑗′
=

𝜕

𝜕𝛽𝑗′
(∑ 𝑦𝑖𝑥𝑖𝑗

𝑁

𝑖=1

− 𝑛𝑖𝑝𝑥𝑖𝑗)                                           

=
𝜕

𝜕𝛽𝑗′
(∑ −𝑛𝑖𝑝𝑥𝑖𝑗

𝑁

𝑖=1

)                                       

= − ∑ 𝑛𝑖𝑥𝑖𝑗

𝜕

𝜕𝛽𝑗′
(

exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

1 + exp(∑ 𝑥𝑖𝑗
𝐾
𝑗=0 𝛽𝑗)

)

𝑁

𝑖=1

 

= − ∑ 𝑛𝑖𝑥𝑖𝑗𝑝(1 − 𝑝)

𝑁

𝑖=1

𝑥𝑖𝑗′ .                             

 

which is negative definite (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Therefore, the 

estimates of 𝜷 obtained by setting Equation (29) to zero maximize the log-likelihood 

function in Equation (28) and hence maximize the likelihood function in Equation (24). 
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 3.3.2.2 Odds ratio and interpretation 

The most common interpretable measure of effect from logistic regression model is the 

odds ratio. For example, considering a binary logistic regression model given in Equation 

(23), the odds of having acute respiratory distress given a particular predictor variable are 

𝑃(𝑌𝑖 = 1|𝑋𝑖)

1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖)
.  

In order to obtain the effect of a one-unit increase in the predictor variable on the 

outcome of interest, a measure known as odds ratio is used and it is calculated as follows:  

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =

𝑃(𝑌𝑖 = 1|𝑋𝑖 + 1)
1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖 + 1)⁄

𝑃(𝑌𝑖 = 1|𝑋𝑖)
1 − 𝑃(𝑌𝑖 = 1|𝑋𝑖)

⁄
= 𝑒𝛽𝑗            𝑗 = 0, 1, … , 𝐾. 

That is, for a one-unit increase in the predictor variable 𝑋𝑖, we expect 𝑒𝛽𝑗 times odds of 

obtaining the outcome of interest (baseline acute respiratory distress).  

 

In order to visualise the prediction model, a nomogram was plotted. A nomogram ranks 

the importance of a predictor variable in predicting the outcome (baseline acute 

respiratory distress) in the context of the other predictor variables in the model. Each of 

the predictor variables included in the predictive model were arranged one by one on a 

horizontal plane with its scoring system, ranging from 0 to 10, at the bottom. The total 

score ranged from 0 to 27. The most important predictors in predicting the outcome of 

interest have higher scores. 

 

The goodness-of-fit for the predictive model given by Equation (23) was assessed using 

Hosmer-Lemeshow goodness-of-fit test. This statistical test measures the correspondence 
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of the observed and predicted values of the outcome variable. A better model fit is 

characterized by insignificant differences between the observed and predicted values. It 

tests the hypothesis 𝐻0: there is no difference between the predicted and observed values 

against 𝐻1: there is a difference between the predicted and observed values. To assess 

performance of the predictive model, measures of diagnostic accuracy such as sensitivity, 

specificity, positive predictive values, negative predictive values and area under the ROC 

curve (AUC) were computed. The predictive model with AUC value closer to 1 has a 

high discriminating power. That is, it has a high ability to correctly distinguish between a 

patient with baseline acute respiratory distress and a patient without the condition. On the 

other hand, an AUC value of 0.5 shows that the predictive model makes random choices 

whereas AUC value below 0.5 indicates that the predictive model is not useful. 

Classification and regression tree (CART) was also used to predict the outcome of 

interest based on the presented predictor variables. Classification and regression tree 

methodology is one of the oldest and most fundamental algorithms. It is used to predict 

outcomes based on certain predictor variables. The classification and regression tree is 

also used in machine learning to create predictive models that can be used to make 

predictions about data. 

 

All the analyses were implemented in Stata Software Package version 17.0 and R 

Software Package version 4.2.1. 
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3.4 Ethical Considerations 

 

AQUAMAT study ethical approval registered under ISRCTN50258054, was obtained 

from each participating institutional or national ethics committee in addition to the 

Oxford Tropical Research Ethics committee (Dondorp et al., 2010). The use of data for 

this study was approved by the Oxford-Mahidol research Unit Data Access Committee 

through an application for ‘Datasets under the Custodianship of Mahidol Oxford Tropical 

Medicine Research Unit (MORU) Tropical Network’. 
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CHAPTER 4 

RESULTS 

 

4.1 Exploratory Data Analysis 

 

This study is aimed at predicting baseline acute respiratory distress in African children 

who have severe malaria. The study used AQUAMAT dataset comprising of 5426 

children (<15 years) who had been hospitalized for severe malaria from eleven centres 

from nine African participating countries, namely; Mozambique, The Gambia, Ghana, 

Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the Democratic Republic of the Congo 

(Dondorp et al., 2010). These patients were randomly assigned to two treatment arms, 

namely; the artesunate arm and the quinine arm. The baseline characteristics of the 

subjects were collected at admission as presented in Table 3. 

 

Table 3 shows that there were no significant differences between patients assigned to the 

artesunate arm and quinine arm. This shows that recruitment of study participants into the 

treatment arms was balanced. 

 

Table 3: Baseline characteristics of patients recruited in the AQUAMAT trial 

Variable                                                                               Total                     Artesunate                 Quinine 

Sample size                                                                           N=5,426                 N=2,713                   N=2,713                 

Country                                                                                                                                                                                          

      Congo                                                                             422 (8%)                 212 (8%)                   210 (8%)               

      Gambia                                                                           502 (9%)                 250 (9%)                   252 (9%)               
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      Ghana                                                                              436 (8%)                 218 (8%)                   218 (8%)               

      Kenya                                                                              442 (8%)                  219 (8%)                  223 (8%)               

      Mozambique                                                                  664 (12%)                332 (12%)                332 (12%)              

      Nigeria                                                                             450 (8%)                  226 (8%)                  224 (8%)               

      Rwanda                                                                            386 (7%)                  194 (7%)                 192 (7%)               

      Tanzania                                                                        1,461 (27%)                729 (27%)              732 (27%)              

      Uganda                                                                          663 (12%)                 333 (12%)               330 (12%)        

Patient age in years (Median, IQR)                                            2 (1-4)                       2 (1-4)                     2 (1-4)               

Weight (kg) (Mean, SD)                                                             12 (5)                        12 (5)                      13 (5)                    

Sex                                                                                                                                                                                                    

       female                                                                          2,611 (48%)              1,316 (49%)           1,295 (48%)            

       male                                                                             2,815 (52%)              1,397 (51%)           1,418 (52%)            

Respiratory rate (per minute) (Mean, SD)                                  47 (14)                       47 (14)                   47 (14)               

Systolic blood pressure (mmHg) (Mean, SD)                             95 (14)                      95 (14)                   95 (14)               

Diastolic blood pressure (mmHg) (Mean, SD)                           56 (13)                       56 (13)                   56 (13)              

Pneumonia                                                                            447 (8%)                    225 (8%)                222 (8%)            

Sepsis                                                                                    653 (12%)                 300 (11%)              353 (13%)        

Symptomatic severe anaemia (severe pallor  

  combined with respiratory distress)                                    2,213 (41%)            1,131 (42%)            1,082 (40%)        

Respiratory distress: Costal indrawing/recession, 

  respiratory insufficiency                                                      867 (16%)              439 (16%)                 428 (16%)           

Coma at admission (GCS <= 10, BCS <= 2)                      1,823 (34%)             881 (32%)                 942 (35%)           

Convulsions > 30 minutes                                                1,692 (31%)            812 (30%)                880 (32%)         

Hyperparasitaemia (>500 parasites  

  per high powered field)                                                       100 (2%)                 44 (2%)                      56 (2%)           

Compensated shock (capillary refill >= 3 sec 

   temperature gradient)                                          485 (9%)             233 (9%)               252 (9%)             

Decompensated shock (Adults: systolic BP< 80mmHg,  

   Children: systolic BP < 70 mmHg)                                    178 (3%)                 90 (3%)                       88 (3%)            
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Suspected severe acidosis: Deep breathing                             938 (17%)             443 (16%)                495 (18%)           

Blood transfusion                                                                  2,982 (55%)           1,487 (55%)           1,495 (55%)          

Mechanical ventilation                                                                55 (1%)                 23 (1%)                  32 (1%)             

Currently treated for chronic illness                                            39 (1%)                  16 (1%)                 23 (1%)              

Renal failure                                                                               16 (0%)                   8 (0%)                     8 (0%)               

Severe prostration (Not able to breastfeed < 6m,  

    or able to sit > 6m)                                                          2,974 (55%)          1,505 (55%)             1,469 (54%)            

Data are presented as mean (SD) or median (IQR) for continuous measures, and n (%) for categorical 

measures. 

 

Table 4 indicates that, of the 5426 patients recruited in the trial, 867 (15.98%) had 

respiratory distress whereas 4559 (84.02%) did not have respiratory distress. Table 3 

shows that there was no significant difference between children with respiratory distress 

in the artesunate arm and those in the quinine arm. That is, 439 (16%) children in the 

artesunate arm and 428 (16%) in the quinine arm. 

 

Table 4: Children with respiratory distress in the AQUAMAT trial 

Respiratory distress                                                       Frequency                Percent                Cumulative 

          No                                                                              4,559                       84.02                       84.02 

          Yes                                                                               867                        15.98                       100.00 

        Total                                                                              5,426                     100.00  

 

Exploring patients’ age distribution by gender shows that females have the mean age of 

2.85 years with a standard deviation of 2.32 years while males have the mean age of 2.92 

years with a standard deviation of 2.38 years. The maximum registered age in either sex 

was 14 years. These age statistics reflect no significant difference between female and 

male patients recruited in the trial as presented in Table 5.  
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Table 5: Age statistics of female and male patients in the AQUAMAT trial  

Sex                                                                        Mean                         SD                  Max                      Min 

female                                                                      2.85                          2.32                  14                          0 

male                                                                         2.92                          2.38                  14                          0 

Total                                                                        2.89                          2.35                  14                          0 

 

 Figure 1 is a bar graph that depicts proportion of patients with baseline acute respiratory 

distress who died or survived. The graph shows that a larger proportion of patients 

diagnosed with acute respiratory distress died as compared to a smaller proportion that 

survived. 
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Figure 1: Proportion of patients with acute respiratory distress who died or survived 

 

It is evident from Figure 1 that acute respiratory distress is predictive of high mortality in 

severe malaria children. Therefore, there is great need to determine risk factors associated 

with baseline acute respiratory distress and generate a predictive model so as to better 

manage the condition and be able to develop preventative and early intervention 

measures. 

 

The histogram in Figure 2 shows that age of patients recruited in the AQUAMAT trial is 

skewed to the right. This implies that a lot of patients had their ages concentrated around 

0 to 5 years with about 23% of them being around 2 years old. Less than 3% of the 
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patients were aged between 10 and 15 years in the trial. Presenting median (IQR) in the 

table of baseline characteristics is reasonable for this non-normal kind of distribution. 

 

Figure 2: Histogram of patients’ age (in years) distribution 

 

Results in figure 2 imply that this study focuses on baseline acute respiratory distress in 

children who are different from adults, in terms of lung maturation with age, 

developmental stages, epidemiology, comorbidities, and prognosis. 

 

Figure 3 shows that weight (kg) of the patients recruited in the trial was slightly skewed 

to the right. Most of the patients had their weight between 5 kg and 20 kg with the largest 

proportion around 10 kg to 12 kg. A very small proportion had their weights between 25 

kg and 35 kg. This is typical for this study which involves children.  
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Figure 3: Weight (kg) of patients in AQUAMAT trial 

 

Figure 4 looks into respiratory rate (per minute) of patients recruited in the AQUAMAT 

trial. The histogram shows that most of the patients in the study had their respiratory rate 

between 30 and 60 per minute with the largest proportion having respiratory rate of 42 

per minute. The distribution seems to be approximately mound-shaped.   
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Figure 4: Respiratory rate (per minute) of patients recruited in the AQUAMAT trial 

 

Figure 5 is a histogram presenting systolic blood pressure (mmHg) of patients recruited 

in the trial. The distribution is approximately normally distributed. Patients have their 

systolic blood pressure between 50 mmHg and 150 mmHg. The largest proportion of the 

patients have their systolic blood pressure around 90 mmHg.  
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Figure 5: Systolic blood pressure (mmHg) of patients recruited in the AQUAMAT trial 

 

Figure 6 presents diastolic blood pressure (mmHg) of patients recruited in the 

AQUAMAT trial. The distribution is approximately normally distributed. Patients have 

their diastolic blood pressure between 20 mmHg and 100 mmHg. The largest proportion 

of the patients have their diastolic blood pressure around 55 mmHg.  
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Figure 6: Diastolic blood pressure (mmHg) of patients recruited in the AQUAMAT trial 

 

A bar graph in figure 7 considers the proportion of females and males who presented 

acute respiratory distress in the trial. The figure indicates that there were slightly more 

females who presented respiratory distress: costal indrawing/recession/respiratory 

insufficiency as compared to their male counterparts. 
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Figure 7: Proportion of patients with respiratory distress against sex 

 

Figure 7 may suggest that acute respiratory distress has a slightly disproportionate effect 

on male and female patients with more female patients being affected as compared to 

male patients. However, the difference is marginal.  

 

4.2 Analysis of Predictors of Baseline Acute Respiratory Distress  

 

The association between baseline acute respiratory distress and each of the predictor 

variables is assessed by fitting a univariable binary logistic regression model. Table 6 

shows the results obtained by regressing baseline acute respiratory distress and each of 

the predictor variables. 
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Results in table 6 show that the predictor variables; patient age (years), weight (kg), 

respiratory rate (per minute), diastolic blood pressure (mmHg), pneumonia, sepsis, 

symptomatic severe anaemia (severe pallor combined with respiratory distress), coma at 

admission (GCS ≤ 10, BCS ≤ 2), convulsions > 30 minutes, decompensated shock 

(adults: systolic BP< 80 mmHg, children: systolic BP < 70 mmHg), hyperparasitaemia (> 

500 parasites per high powered field), severe acidosis: deep breathing, blood transfusion, 

mechanical ventilation, if a patient is currently treated for chronic illness and severe 

prostration (not able to breastfeed < 6 m, or able to sit > 6 m) are individually significant 

and are associated with the prediction of baseline acute respiratory distress in severe 

malaria children. They have p-values less than 0.05. On the other hand, sex, systolic 

blood pressure (mmHg), compensated shock (capillary refill ≥ 3 sec temperature 

gradient), and renal failure are individually not significant. Their p-values are greater than 

0.05.  

 

Table 6: Univariable model analysis for the relationship between baseline acute 

respiratory distress and individual predictor variable 

Variable                                                                               Odds ratio (95% CI)                               P-Value             

Patient age (years)                                                                      0.84 (0.80, 0.87)                                     <0.001             

Sex  

      male                                                                                     0.91 (0.79, 1.05)                                       0.213            

Weight (kg)                                                                                0.91 (0.89, 0.93)                                     <0.001               

Respiratory rate (per minute)                                                      1.04 (1.04, 1.05)                                     <0.001              

Systolic blood pressure (mmHg)                                                 1.00 (0.99, 1.00)                                       0.209             

Diastolic blood pressure (mmHg)                                               0.99 (0.99, 1.00)                                       0.022              

Pneumonia                                                                                  3.56 (2.90, 4.39)                                     <0.001              

Sepsis                                                                                          1.58 (1.30, 1.94)                                     <0.001            

Severe anaemia                                                                            1.67 (1.45, 1.94)                                     <0.001            

Coma at admission                                                                      1.32 (1.14, 1.54)                                     <0.001            

Convulsions > 30 minutes                                                           0.74 (0.63, 0.88)                                     <0.001            
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Compensated shock                                                                   1.06 (0.83, 1.36)                                        0.649              

Decompensated shock                                                               1.94 (1.38, 2.73)                                      <0.001             

Hyperparasitaemia                                                                      2.19 (1.41, 3.39)                                      <0.001                

Severe acidosis                                                                           3.32 (2.82, 3.91)                                      <0.001                

Blood transfusion                                                                       1.47 (1.26, 1.70)                                      <0.001             

Mechanical ventilation                                                                2.18 (1.21, 3.92)                                        0.009            

Currently treated for chronic illness                                            2.08 (1.03, 4.19)                                        0.041             

Renal failure                                                                                1.21 (0.35, 4.27)                                       0.762               

Severe prostration                                                                       0.65 (0.56, 0.76)                                     <0.001           

 

Predictor variables which are statistically significant at 5% level of significance, from a 

univariable binary logistic regression model are used to generate a predictive model of 

baseline acute respiratory distress. This predictive model is a multivariable binary logistic 

regression model. Table 7 presents results of a multivariable analysis of admission 

features and their effect in predicting baseline acute respiratory distress in children with 

severe malaria.  

 

From multivariable analysis in Table 7, respiratory rate (per minute), pneumonia, sepsis, 

convulsions > 30 minutes, hyperparasitaemia (>500 parasites per high powered field), 

severe acidosis: deep breathing, if a patient is currently treated for chronic illness and 

severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m) are significant 

predictors of baseline acute respiratory distress in severe malaria children.  

 

A one-unit increase in respiratory rate (per minute) of a patient with severe malaria leads 

to a 1.03 times increased risk of developing baseline acute respiratory distress (OR: 1.03, 

CI: 1.03 - 1.04, p-value < 0.001). A patient who presents pneumonia on admission has 

2.49 times increased risk of developing baseline acute respiratory distress as compared to 
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a patient without pneumonia (OR: 2.49, CI: 1.99 - 3.13, p-value < 0.001). A severe 

malaria patient with sepsis on admission has 1.46 times increased risk of developing 

baseline acute respiratory distress as compared to a patient without sepsis on admission 

(OR: 1.46, CI: 1.18 - 1.82, p-value = 0.001). A patient with hyperparasitaemia (>500 

parasites per high powered field) on admission has 1.96 times increased risk of 

developing baseline acute respiratory distress as compared to a patient without 

hyperparasitaemia on admission (OR: 1.96, CI: 1.21 - 3.16, p-value = 0.006). A severe 

malaria patient with convulsions > 30 minutes on admission has a 23% reduced risk of 

developing baseline acute respiratory distress as compared to a patient not presenting 

convulsions > 30 minutes on admission (OR: 0.77, CI: 0.63 - 0.93, p-value = 0.007). A 

patient presenting severe acidosis: deep breathing on admission has 2.49 times increased 

risk of developing baseline acute respiratory distress as compared to a patient not 

presenting severe acidosis (OR: 2.49, CI: 2.09 - 2.97, p-value < 0.001). A patient who is 

currently being treated for chronic illness has 2.32 increased risk of developing baseline 

acute respiratory distress as compared to a patient not currently treated for chronic illness 

(OR: 2.32, CI: 1.05 - 5.14, p-value = 0.038). A patient with severe prostration (not able 

to breastfeed < 6 m, or able to sit > 6 m) has 31% reduced risk of developing baseline 

acute respiratory distress as compared to a patient without severe prostration on 

admission (OR: 0.69, CI: 0.55 - 0.88, p-value = 0.003).  

 

The predictive model shows that the greatest predictors of baseline acute respiratory 

distress in severe malaria African children are pneumonia, severe acidosis, if a patient is 

currently treated for chronic illness, hyperparasitaemia, sepsis, respiratory rate (per 

minute), convulsions > 30 minutes and severe prostration, in that order. 
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On the other hand, patient age (in years), weight (kg), diastolic blood pressure (mmHg), 

symptomatic severe anaemia (severe pallor combined with respiratory distress), coma at 

admission (GCS ≤ 10, BCS ≤ 2), decompensated shock (Adults: systolic BP< 80 mmHg, 

Children: systolic BP < 70 mmHg), blood transfusion and mechanical ventilation do not 

significantly predict the development of baseline acute respiratory distress in severe 

malaria African children.   

To validate the constructed prediction model, Hosmer-Lemeshow goodness-of-fit test 

was carried out. This statistical test measures the correspondence of the observed and 

predicted values of the outcome variable (baseline acute respiratory distress). A better 

model fit is characterized by insignificant differences between the observed and predicted 

values. It tests the hypothesis 𝐻0: there is no difference between the predicted and 

observed values against 𝐻1: there is a difference between the predicted and observed 

values. With the p-value of 0.9935 in Table 7, we fail to reject the null hypothesis and 

conclude that there is no significant difference between the observed and predicted values 

of the predictive model, suggesting that the model fitted the data well. 

  

Table 7: Multivariable analysis (predictive model analysis) of admission features and 

their effect in predicting baseline acute respiratory distress in children with severe 

malaria.   

Variable                                                                          Odds ratio (95% CI)                                    P-Value             

Patient age (years)                                                                 0.98 (0.91, 1.06)                                            0.629                

Weight (kg)                                                                           0.97 (0.94, 1.01)                                            0.178                

Respiratory rate (per minute)                                                 1.03 (1.03, 1.04)                                          <0.001             

Diastolic blood pressure (mmHg)                                          1.00 (1.00, 1.01)                                            0.338            

Pneumonia                                                                            2.49 (1.99, 3.13)                                          <0.001            

Sepsis                                                                                    1.46 (1.18, 1.82)                                             0.001             
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Severe anaemia                                                                      1.12 (0.91, 1.37)                                             0.287            

Coma at admission                                                                1.26 (0.97, 1.64)                                             0.088            

Hyperparasitaemia                                                                 1.96 (1.21, 3.16)                                             0.006            

Convulsions > 30 minutes                                                     0.77 (0.63, 0.93)                                             0.007             

Decompensated shock                                                           1.36 (0.93, 2.00)                                             0.116             

Severe acidosis                                                                      2.49 (2.09, 2.97)                                           <0.001             

Blood transfusion                                                                  0.98 (0.80, 1.19)                                             0.807            

Mechanical ventilation                                                           1.43 (0.76, 2.69)                                             0.269           

Currently treated for chronic illness                                       2.32 (1.05, 5.14)                                             0.038           

Severe prostration                                                                  0.69 (0.55, 0.88)                                             0.003           

Constant                                                                               0.04 (0.02, 0.07)                                           <0.001           

                                                                                                       χ2                                                     P-Value           
Goodness-of-fit test  
          Hosmer-Lemeshow                                                            30.17                                                    0.9935 

 

In order to visualise the predictive model, a nomogram was plotted in Figure 8. A 

nomogram ranks the importance of a predictor variable in predicting the outcome 

(baseline acute respiratory distress) in the context of the other predictor variables in the 

model. Each of the sixteen predictor variables included in the predictive model were 

arranged one by one on a horizontal plane with its scoring system, ranging from 0 to 10, 

at the bottom. The total score ranged from 0 to 27. 
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Figure 8: Nomogram for prediction of baseline acute respiratory distress 

 



71 

 

 

Figure 9: Continued 

Results in Figure 8 show predictors in the predictive model ranked with their 

corresponding scores. Table 8 lists these predictors in order of importance (from highest 

to lowest) in predicting baseline acute respiratory distress.  

Table 8: Rank of predictors of baseline acute respiratory distress 

Predictor                                                                                                                                      Score                                     

Respiratory rate (per minute)                                                                                                           10                                                        

Weight (Kgs)                                                                                                                                   3.6                                                        

Severe acidosis                                                                                                                                2.5                                             

Pneumonia                                                                                                                                      2.5                                              

Currently treated for chronic illness                                                                                                 2.4                                              

Hyperparasitaemia                                                                                                                            2                                               

Diastolic blood pressure                                                                                                                   1.2                                               

Sepsis                                                                                                                                                1 

Mechanical ventilation                                                                                                                       1 
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Severe prostration                                                                                                                              1 

Decompensated shock                                                                                                                       0.8 

Convulsions > 30 minutes                                                                                                                 0.75 

Patient age (Years)                                                                                                                             0.75 

Coma                                                                                                                                                 0.6 

Severe anaemia                                                                                                                                   0.4 

Blood transfusion                                                                                                                               0.1 

 

4.3 Analysis of Sensitivity, Specificity, Positive and Negative Predictive Values 

 

To assess the predictive ability of a model, diagnostic accuracy measures such as 

sensitivity, specificity, positive predictive values and negative predictive values are used. 

First, an optimal probability cutoff point is generated by plotting graphs of sensitivity and 

specificity on the same axes as in Figure 9. 
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Figure 10: Optimal probability cutoff point  

 

 

In Figure 9, optimal probability cutoff is found at the point where the graph of sensitivity 

and specificity intersect. In this case, optimal probability cutoff is estimated to be 0.15. 

This value is used as a cutoff point when calculating sensitivity, specificity, positive 

predictive values and negative predictive values. These metrics are presented in Table 9. 

 

Table 9 shows that there are 603 true positives, 1433 false positives, 264 false negatives 

and 3126 true negatives. In the 5426 patients recruited in the study, a total of 867 had 

baseline acute respiratory distress while 4559 did not have baseline acute respiratory 

distress. This is the gold standard test. The predictive model classified a total 2036 
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patients as positives and 3390 as negatives. The overall rate of correct classification for 

the predictive model is estimated to be 68.72%, with 69.55% of the patients with baseline 

acute respiratory distress correctly classified positive for the disease (sensitivity) and 

68.57% of the patients without baseline acute respiratory distress correctly classified 

negative for the condition (specificity). Table 9 also indicates that 29.62% of the patients 

are classified as having baseline acute respiratory distress given that the predictive model 

result is positive (positive predictive value) and 92.21% of the patients are classified as 

not having baseline acute respiratory distress given that the predictive model result is 

negative (negative predictive value).  

 

Table 9: Sensitivity, specificity, positive and negative predictive values  

 

Classified 

True  

Total Disease (𝐷) No disease (𝐷̅)   

Positive (𝑇)  

Negative (𝑇̅)  

603 

264 

1433 

3126 

2036 

3390 

Total 867 4559 5426 

 

Classified positive if predicted Pr(𝐷) ≥ 0.15 

True 𝐷 defined as baseline acute respiratory distress ≠ 0 

Sensitivity                                                               Pr(𝑇|𝐷)                                                                    69.55% 

Specificity                                                               Pr(𝑇̅|𝐷̅)                                                                    68.57% 

Positive predictive value                                          Pr(𝐷|𝑇)                                                                    29.62% 

Negative predictive value                                        Pr(𝐷̅|𝑇̅)                                                                    92.21% 

False + rate for true 𝐷̅                                            Pr(𝑇|𝐷̅)                                                                    31.43% 

False − rate for true 𝐷                                            Pr(𝑇̅|𝐷)                                                                    30.45% 

False + rate for classified +                                    Pr(𝐷̅|𝑇)                                                                    70.38% 

False − rate for classified −                                    Pr(𝐷|𝑇̅)                                                                      7.79% 

Correctly classified                                                                                                                                   68.72% 
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4.4 Analysis of the Area Under ROC Curve (AUC) 

 

In order to assess the predictive model’s discriminative power, sensitivity against 

specificity is plotted. That is, to determine the predictive model’s ability to distinguish 

between children with baseline acute respiratory distress and those without baseline acute 

respiratory distress. This is achieved by examining the shape of a ROC curve and the 

AUC value. AUC measure is used to assess the diagnostic accuracy or the performance 

of a predictive model. Figure 10 is the ROC curve with the associated AUC value 

presented in Table 10. 

 

 

Figure 11: Receiver Operating Characteristic (ROC) curve 
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Figure 10 shows that the predictive model under consideration has a good ability to 

distinguish between children with baseline acute respiratory distress and those without 

baseline acute respiratory distress. This is evidenced by the curve's proximity to the 

upper-left corner. 

  

The curve is Figure 10 has an area of 0.75 (95% CI: 0.73 - 0.77) under it as presented in 

Table 10. This indicates that the predictive model is good at classifying severe malaria 

patients as having baseline acute respiratory distress or not, i.e., a 0.75 rate indicates that 

the predictions are not by random choice. 

 

Table 10: Area under the ROC curve                                                                                                                                                     

Observations                                     Area under ROC curve (95% CI)                                           Std. error                          

  5,426                                                               0.75 (0.73, 0.77)                                                              0.009                                      

 

 

4.5 Classification Tree Analysis 

 

Classification trees are prediction models constructed by recursively partitioning a data 

set and fitting a simple model to each partition. The goal, in this study, is to find a model 

for predicting if a patient is at higher or lower risk of developing baseline acute 

respiratory distress depending on the value(s) of the clinical factors he/she is presenting. 

A classification tree is presented in Figure 11. 
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Figure 12: Classification tree for predicting baseline acute respiratory distress 

 

Figure 11 is a classification tree created from a sample of 5426 observations partitioned 

into different branches depending on conditions presented by patients. The classification 

tree classifies patients as having a higher risk or lower risk of developing baseline acute 

respiratory distress. There is a splitting-criteria at each node of the tree. The value of 𝑛 at 

each terminal node indicates the number of patients who fall in that category based on the 
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conditions they present on admission. The proportion at each terminal node represents the 

proportion of patients who are classified as having baseline acute respiratory distress out 

of 𝑛. Thus, higher and lower proportions are indicative of higher and lower risks, 

respectively, of developing baseline acute respiratory distress. 

Results show that 10 patients are classified as having respiratory rate of at least 69.5 per 

minute, having hyperparasitaemia (>500 parasites per high powered field) and without 

severe acidosis: deep breathing. These patients have 80% increased risk of developing 

baseline acute respiratory distress (proportion = 0.8, 𝑛 = 10). This is followed by 42 

patients who are classified as having respiratory rate of 39.5 - 65 per minute, presenting 

severe acidosis: deep breathing, presenting pneumonia and without severe prostration 

(not able to breastfeed < 6 m, or able to sit > 6 m). These patients have 73.8% increased 

risk of developing baseline acute respiratory distress (proportion = 0.738, 𝑛 = 42). 

Results also show that 46 patients are classified as having respiratory rate of at least 69.5 

per minute, having pneumonia, without severe acidosis and without hyperparasitaemia 

(>500 parasites per high powered field). These patients have 47.8% higher risk of 

developing baseline acute respiratory distress (proportion = 0.478, 𝑛 = 46).  

Figure 11 indicates that 41 patients are classified as having respiratory rate of at least 

69.5 per minute, having sepsis, without severe acidosis: deep breathing, without 

pneumonia and without hyperparasitaemia (>500 parasites per high powered field). These 

patients have 46.3% higher risk of developing baseline acute respiratory distress 

(proportion = 0.463, 𝑛 = 41). 60 patients are classified as having respiratory rate of at 

least 39.5 per minute, having severe acidosis: deep breathing, having pneumonia and 

having severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These 
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patients have 40% higher risk of developing baseline acute respiratory distress 

(proportion = 0.4, 𝑛 = 60). 347 patients are classified as having respiratory rate of at 

least 39.5 per minute, having severe acidosis: deep breathing, without pneumonia and 

without severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These 

patients have 37.5% higher risk of developing baseline acute respiratory distress 

(proportion = 0.375, 𝑛 = 347).  

Results in figure 11 also shows that 14 patients are classified as having respiratory rate of 

at least 65 per minute, having severe acidosis: deep breathing, having pneumonia and 

without severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These 

patients have 35.7% higher risk of developing baseline acute respiratory distress 

(proportion = 0.357, 𝑛 = 14). 163 patients are classified as having respiratory rate of 

48.5 – 69.5 per minute, having pneumonia and without severe acidosis: deep breathing. 

These patients have 31.3% higher risk of developing baseline acute respiratory distress 

(proportion = 0.313, 𝑛 = 163). 325 patients are classified as having respiratory rate of at 

least 39.5 per minute, severe acidosis: deep breathing, severe prostration (not able to 

breastfeed < 6 m, or able to sit > 6 m) and without pneumonia. These patients have 

27.7% higher risk of developing baseline acute respiratory distress (proportion =

0.277, 𝑛 = 325). 109 patients are classified as having respiratory rate less than 48.5 per 

minute, having pneumonia and without severe acidosis: deep breathing. These patients 

have 25.7% higher risk of developing baseline acute respiratory distress (proportion =

0.257, 𝑛 = 109).  
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It is also observed that 186 patients are classified as having respiratory rate of at least 

69.5 per minute, without severe acidosis: deep breathing, without pneumonia, without 

sepsis and without hyperparasitaemia (>500 parasites per high powered field). These 

patients have 24.2% higher risk of developing baseline acute respiratory distress 

(proportion = 0.242, 𝑛 = 186). 1253 patients are classified as having respiratory rate of 

48.5 – 69.5 per minute, without severe acidosis: deep breathing and without pneumonia. 

These patients have 17.2% higher risk of developing baseline acute respiratory distress 

(proportion = 0.172, 𝑛 = 1253). 150 patients are classified as having respiratory rate 

less than 39.5 per minute and having severe acidosis: deep breathing. These patients have 

15.3% increased risk of developing baseline acute respiratory distress (proportion =

0.153, 𝑛 = 150). 1446 patients are classified as having respiratory rate of 37.5 – 48.5 per 

minute, without severe acidosis: deep breathing and without pneumonia. These patients 

have 8.8% increased risk of developing baseline acute respiratory distress (proportion =

0.0878, 𝑛 = 1446).  

Lastly, 1234 patients are classified as having respiratory rate less than 37.5 per minute, 

without severe acidosis: deep breathing and without pneumonia. These patients have 

4.0% increased risk of developing baseline acute respiratory distress (proportion =

0.0397, 𝑛 = 1234).  
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CHAPTER 5 

DISCUSSION 

 

The wide range of disease states linked to the development of acute respiratory distress in 

children and the fact that the diagnosis of acute respiratory distress in children is a 

syndrome rather than a distinct entity with a validated diagnostic confirmatory test add to 

the inherent difficulties of investigating the development of acute respiratory distress in 

children. This challenge is exacerbated by limited resources in most African settings and 

high prevalence of malaria in Sub-Saharan Africa. 

 

This study used data from AQUAMAT trial which was conducted from October 3, 2005, 

to July 14, 2010, among children (<15 years) who had been hospitalized for severe 

malaria from eleven centres from nine participating African countries including; 

Mozambique, The Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the 

Democratic Republic of the Congo (Dondorp et al., 2010). This study aimed at predicting 

baseline acute respiratory distress in African children who have severe malaria. In 

particular, the study intended to generate a predictive model based on demographic and 

clinical factors as well as develop a classification tool, based on the conditions presented 

by the patient, which can be used to predict children at high risk of developing baseline 

acute respiratory distress so as to timely escalate these cases for further laboratory tests. 

Identifying risk factors and understanding which patients are at risk of developing 
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baseline acute respiratory distress is significantly important in order to be able to develop 

preventative and early intervention mechanisms. 

 

This study found that clinical features associated with baseline acute respiratory distress 

are pneumonia, severe acidosis: deep breathing, if a patient is currently treated for 

chronic illness, hyperparasitaemia (>500 parasites per high powered field), sepsis, 

respiratory rate (per minute), convulsions > 30 minutes and severe prostration (not able to 

breastfeed < 6 m, or able to sit > 6 m).  

 

Both univariable and multivariable binary logistic regression models show that having 

pneumonia poses a highest risk of developing baseline acute respiratory distress in severe 

malaria children. This is so because pneumonia, in itself, is a form of acute respiratory 

illness and it directly affects the lungs by filling up the alveoli with pus and fluid which 

limits oxygen intake and makes breathing painful (WHO, 2021). Similar findings were 

reported by Bellani et al. (2016) from the Large Observational Study to Understand the 

Global Impact of Severe Respiratory Failure (LUNG SAFE) which recruited a sample of 

29,144 patients from 459 ICUs and identified 3022 patients with acute respiratory 

distress. Of those patients, 59.4% had pneumonia as a risk factor for acute respiratory 

distress. This study has also shown that severe acidosis: deep breathing is the second 

ranked risk factor associated with baseline acute respiratory distress in severe malaria 

children. Lungs and kidneys are the organs which help in maintaining pH balance in the 

body. Excess of acids has a potential of damaging these organs hence resulting into acute 

respiratory distress. These findings are similar to what was reported by Mzumara et al., 



83 

 

(2021) that the signs of acute respiratory distress are commonly associated with severe 

acidosis, as is the findings of similar studies in The Gambia and Kenya (English et al., 

2002; Mzumara et al., 2021).  

 

This study also suggests that patients who are currently treated for chronic illness are at a 

higher risk of developing baseline acute respiratory distress. Paediatric patients with 

preexisting chronic illness, such as human immunodeficiency virus (HIV) and cancer, 

and currently treated for such illnesses, are at an increased risk of developing baseline 

acute respiratory distress because these patients have worse outcomes, such as increased 

hospital mortality, and have proportionately more infections as the cause of baseline 

acute respiratory distress (Cortegiani et al., 2018; Erickson et al., 2007). 

Hyperparasitaemia (>500 parasites per high powered field), sepsis, respiratory rate (per 

minute), convulsions > 30 minutes and severe prostration (not able to breastfeed < 6 m, 

or able to sit > 6 m) also increase the risk of and are associated with development of 

baseline acute respiratory distress in severe malaria children. For instance, as reported by 

Khemani et al. (2018), sepsis is the most common cause of acute respiratory distress. 

Diffuse alveolar damage may arise as a result of endothelial activation, cytokine-

mediated inflammatory disorders and reactive oxygen species that are present in 

individuals with severe sepsis (Truwit et al., 2014). 

 

Though the univariable model, in this study, show that age is statistically significant, the 

multivariable model suggest that age is not associated with development of baseline acute 

respiratory distress in severe malaria children. This is in resonance with some literature 
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reports that indicate that the immune system develops and assumes more complexity with 

age which suggests reduced risk of developing baseline acute respiratory distress as age 

increases (Hartel et al., 2005). Thus, younger children are more vulnerable than older 

people. However, epidemiologic studies to date have not consistently supported distinct 

paediatric acute respiratory distress outcomes based on age, with the majority of research 

finding no association between age and acute respiratory distress in children (Flori et al, 

2005).  

 

Both univariable and multivariable models indicate no association between sex and 

baseline acute respiratory distress in severe malaria children. Similar findings are 

reported by Flori et al. (2005) indicating that there is no difference in the likelihood of 

worse clinical outcomes, emanating for paediatric acute respiratory distress, between 

male and female genders. The univariable model, in this study, show that weight (kg) is 

associated with baseline acute respiratory distress in severe malaria children. That is, 

increase in weight (or body mass index) results in increased risk of developing baseline 

acute respiratory distress. While underweight children with acute respiratory distress 

have increased rates of mortality, obese individuals require longer hospital stays and ICU, 

but display the lowest risk of in-hospital mortality when compared to other weight 

categories (Gong et al., 2010). This is what Zhi et al. (2016) called ‘obesity paradox’. On 

the other hand, the multivariable model indicates that weight (kg) is not associated with 

any risk of developing baseline acute respiratory distress in severe malaria children.  
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The univariable model, in this study, show that blood transfusion and mechanical 

ventilation are significant predictors of baseline acute respiratory distress in severe 

malaria children. Mechanical ventilation, for instance, causes direct lung injury to a 

patient affecting the alveoli epithelial and endothelial cells. This may result in 

development of baseline acute respiratory distress and the worse outcomes associated 

with it. Transfusion of blood products is a less common endeavour; however, it is a 

significant cause of acute lung injury and acute respiratory distress. Researchers have 

verified that transfusions of various blood products, especially those high in protein such 

as fresh frozen plasma and platelets, are linked to the development of acute respiratory 

distress in children as well as negative consequences like increased mortality (Church et 

al., 2009; Khan et al., 2007). On the contrary, however, the multivariable model suggests 

that there is no association between blood transfusion as well as mechanical ventilation 

with the development of baseline acute respiratory distress in severe malaria children. 

 

A nomogram was constructed in order to visualise results of a predictive model. It 

showed that the most important (in descending order) predictors of baseline acute 

respiratory distress are respiratory rate (per minute), weight, severe acidosis, pneumonia, 

if a patient is currently treated for chronic illness, hyperparasiteamia, diastolic blood 

pressure, sepsis, mechanical ventilation, severe prostration, decompensated shock, 

convulsions, patient age, coma, severe anaemia and blood transfusion. However, 

cognizant of the fact that other predictors in the predictive model are not statistically 

significant, it implies that the major predictors of baseline acute respiratory distress are 
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respiratory rate (per minute), severe acidosis, pneumonia, if a patient is currently treated 

for chronic illness, hyperparasiteamia, sepsis, severe prostration and convulsions.     

 

The study conducted a Hosmer-Lemeshow goodness-of-fit test to validate the model. The 

test gave a p-value of 0.9935 which indicted that there is no significant difference 

between the observed and predicted values of the predictive model, suggesting that the 

model fitted the data well. 

 

With an optimal probability cutoff estimated to be 0.15, the calculated measures of 

diagnostic accuracy indicated that the predictive model, in this study, has 68.72% overall 

rate of correctly classifying patients as having baseline acute respiratory distress or not. 

The predictive model also show that 69.55% of the patients with baseline acute 

respiratory distress are correctly classified positive for the disease and 68.57% of the 

patients without baseline acute respiratory distress are correctly classified negative for the 

condition. Findings also indicate that 29.62% of the patients are classified as having 

baseline acute respiratory distress given that the predictive model result is positive and 

92.21% of the patients are classified as not having baseline acute respiratory distress 

given that the predictive model result is negative. The predictive model has an AUC 

value of 0.75. These results demonstrate that the predictive model developed has a strong 

discriminative power. That is, it has a good ability to distinguish between severe malaria 

children with baseline acute respiratory distress and those without baseline acute 

respiratory distress. The AUC value shows that the prediction is not a random choice. 
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This study also developed a classification tree as a decision tool to help identify severe 

malaria patients who are at higher or lower risk of developing baseline acute respiratory 

distress. This has a potential of helping health practitioners in early identification of 

baseline acute respiratory distress by considering the conditions presented by a patient. 

This will also guide proper management and timely interventions provided to such 

patients in order to minimise worse outcomes associated with baseline acute respiratory 

distress in children. The classification tree has ranked the presence of pneumonia, severe 

acidosis: deep breathing, hyperparasitaemia (>500 parasites per high powered field), 

sepsis as well as increased respiratory rate (per minute) as major conditions classifying a 

patient of being at high risk of developing baseline acute respiratory distress. These 

results are consistent with what was reported by Kohne and Flori (2020).    
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CHAPTER 6 

CONCLUSION, RECOMMENDATIONS, LIMITATIONS AND AREAS FOR 

FURTHER RESEARCH 

 

6.1 Conclusion 

 

Acute respiratory distress (ARD) is a global health concern due to its high rates of 

morbidity and mortality in children. Severe malaria is one of the most common 

conditions that accelerates development of ARD in African children. This study aimed at 

establishing a predictive model for predicting baseline ARD in African children with 

severe malaria as well as classify the predictors in order of importance of how they 

influence development of baseline ARD. This retrospective cohort study was a secondary 

analysis of AQUAMAT data collected from nine African participating countries 

including; Mozambique, The Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda, 

Rwanda, and the Democratic Republic of the Congo. 

 

To determine demographic and clinical predictors of baseline ARD in African children 

with severe malaria, univariable and multivariable binary logistic regression models were 

used. These predictors were visualised and ranked using a nomogram. Several 

approaches were used to validate the predictive model such as Hosmer-Lemeshow 

goodness-of-fit test, sensitivity, specificity, positive predictive values, negative predictive 

values and area under the Receiver Operating Characteristic (ROC) curve. 
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The study revealed that several factors are associated with development of baseline acute 

respiratory distress in African children with severe malaria. The multivariable binary 

logistic regression model revealed that the major predictors of baseline ARD were 

pneumonia, severe acidosis, if a patient is currently treated for chronic illness, 

hyperparasitaemia, sepsis, respiratory rate, convulsions and severe prostration. The 

nomogram ranked important (in descending order) predictors of baseline acute 

respiratory distress as respiratory rate (per minute), severe acidosis, pneumonia, if a 

patient is currently treated for chronic illness, hyperparasiteamia, sepsis, severe 

prostration and convulsions.      

 

The Hosmer-Lemeshow goodness-of-fit test indicated that the predictive model fitted 

well in the data. The predictive model was valuable in predicting baseline ARD with 

overall correct classification of 68.72%. It also had high discriminative power with area 

under the ROC curve of 0.75. That is, the predictive model was able to distinguish 

between a patient with baseline acute respiratory distress and a patient without the 

condition. Classification tree ranked pneumonia, severe acidosis, hyperparasitaemia, 

sepsis, increased respiratory rate as well as severe prostration as major conditions 

classifying a patient of being at high risk of developing baseline ARD. These findings 

will help medical practitioners in early identification of severe malaria children who are 

at high risk of developing baseline ARD. This will necessitate improved management and 

timely interventions provided to such patients in order to prevent development of baseline 

ARD. These findings will also save medical practitioners’ time in identifying and treating 

children with baseline ARD. The findings will also help WHO and/or Ministries of 
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Health in different countries to come up with health policies and guidelines that guide 

diagnosis and management of acute respiratory distress in severe malaria children. 

 

6.2 Recommendations 

1. It is important to train medical practitioners on strategies that would help to 

prevent ARD in children with severe malaria by evaluating the risk of ARD 

during hospitalization. 

2. It is important to formulate guidelines on early identification, interventions, 

management and treatment of children with severe malaria before developing into 

ARD. 

 

6.3 Study Limitations 

1. The data used in the analysis of this study was collected between 2005 and 2010. 

Due to numerous interventions, the results may not reflect the current situation on 

the ground. 

2. Being an observational study, it is essential to highlight that the identified 

predictors may not imply causality, and further prospective studies are needed to 

establish a causal relationship. 

3. The choice of variables included in the analysis may influence the results, and 

there could be other relevant predictors of baseline ARD that were not included in 

the study. 
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6.4 Areas for further research  

1. The study proposes the same area of research but focusing on prospective study 

method to establish causal relationship between predictor variables and baseline 

ARD. 

2. The study proposes the investigation of health system factors such as access to 

healthcare facilities, availability of resources, and quality of healthcare delivery 

that may influence the risk of baseline ARD in severe malaria children, thereby 

informing policy and resource allocation decisions.  
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APPENDICES 

APPENDIX A: STATA Codes 

 
***DO FILE FOR MSC BIOSTATISTICS THESIS-INNOCENT GONDWE*** 

use "H:\INNOCENT GONDWE\SEMESTER 3-4_Research\DATA\AQUAMAT_child.dta" 

 

**viewing dataset** 

browse 

 

**standardising variable sex to be lower cases only** 

replace sex = lower(sex) 

tabulate sex 

 

**encoding, recoding and labeling variable sex** 

encode sex, generate(sex_numeric) 

recode sex_numeric (1=0) (2=1), generate(sex_numeric_recoded) 

rename sex_numeric_recoded sex1 

label define gender 0 "female" 1 "male"  

label values sex1 gender 

 

**overview of the variables of interest in the data** 

tabulate arespins 

tabulate sex1 

tabulate patage 

tabulate aweight 

tabulate aresp 

tabulate abloodprsyst 

tabulate abloodprdiast 

tabulate bcmaln 

tabulate btransf 

tabulate bvent 

tabulate aanaemia 
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tabulate ashockcomp 

tabulate ashockdecomp 

tabulate ahyperp  

tabulate acoma 

tabulate aconvulsions 

tabulate aacidosis 

tabulate aprost 

tabulate acurchron 

tabulate bcgast 

tabulate bpneum 

tabulate bseps 

tabulate odead 

tabulate odead2 

tabulate brenal 

 

**cleaning data by replacing missing values** 

egen mean_aweight =mean(aweight) 

replace aweight = mean_aweight if missing(aweight) 

tabulate aweight  

 

egen mean_aresp =mean(aresp) 

replace aresp = mean_aresp if missing(aresp) 

tabulate aresp  

 

egen mean_abloodprsyst=mean(abloodprsyst) 

replace abloodprsyst= mean_abloodprsyst if missing(abloodprsyst) 

tabulate abloodprsyst 

 

egen mean_abloodprdiast =mean(abloodprdiast) 

replace abloodprdiast = mean_abloodprdiast if missing(abloodprdiast) 

tabulate abloodprdiast 

 

recode acurchron (2=0), generate(acurchron_New)  

tabulate acurchron_New  
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**renaming variable labels in the data** 

label var odrug "Which study-drug did the patient receive (value)" 

label var odrug2 "Which study-drug did the patient receive (labels)" 

label var arespins "Respiratory distress: Costal indrawing/recession, respiratory insufficiency" 

label var country "Country" 

label var sex "Sex" 

label var sex1 "Sex1" 

label var patage "Patient age in years" 

label var aweight "Weight (kg)" 

label var aresp "Respiratory rate (/min)" 

label var abloodprsyst "Blood pressure - Systolic (mmHg)" 

label var abloodprdiast "Blood pressure - Diastolic (mmHg)" 

label var bcmaln "Severe malnutrition" 

label var brenal "Renal failure (urine output <0.5 ml/kg/hour, for >24 hours)" 

label var btransf "Blood transfusion" 

label var bvent "Machanical ventilation" 

label var acurchron_New "Currently treated for chronic illness (value)" 

label var acurchron2 "Currently treated for chronic illness (label)" 

label var bcgast "Gastro enteritis" 

label var bpneum "Pneumonia (Y/N)" 

label var bseps "Sepsis (Y/N)" 

label var odead "Patient died/patient survived (value)" 

label var odead2 "Patient died/patient survived (label)" 

label var aanaemia "Symptomatic severe anaemia (severe pallor combined with respiratory distress)" 

label var acoma "Coma at admission (GCS <= 10, BCS <= 2)" 

label var ashockcomp "Compensated shock (Only for children: capillary refil >= 3 sec/temperature 

gradient)" 

label var ahyperp "Hyperparasitaemia (>500 parasites per high powered field)" 

label var aacidosis "Suspected severe acidosis: Deep breating" 

label var ashockdecomp "Decompensated shock (Adults: systolic BP < 80 mmHg, Children: systolic 

BP < 70 mmHg)" 

label var aconvulsions "Convulsions > 30 minutes" 

label var aprost "Severe prostration (Not able to breastfeed < 6m, or able to sit > 6m)" 

 

**creating table of baseline characteristics (table 1)** 
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ssc install table1_mc 

 

table1_mc, by(odrug2) /// 

vars( /// 

country cat %4.0f \ /// 

 patage conts %4.0f \ /// 

 aweight contn %4.0f \ /// 

 sex1 cat %4.0f \ /// 

 aresp contn %4.0f \ /// 

 abloodprsyst contn %4.0f \ /// 

 abloodprdiast contn %4.0f \ /// 

 bpneum bin %4.0f \ /// 

 bseps bin %4.0f \ /// 

 aanaemia bin %4.0f \ /// 

 arespins bin %4.0f \ /// 

 acoma bin %4.0f \ /// 

 aconvulsions bin %4.0f \ /// 

 ahyperp bin %4.0f \ /// 

 ashockcomp bin %4.0f \ /// 

 ashockdecomp bin %4.0f \ /// 

 aacidosis bin %4.0f \ /// 

 btransf bin %4.0f \ /// 

 bvent bin %4.0f \ /// 

 acurchron_New bin %4.0f \ /// 

 brenal bin %4.0f \ /// 

 aprost bin %4.0f \ ///  

) /// 

nospace onecol missing total(before) /// 

saving("table 1.xlsx", replace) 

 

**descriptive statistics** 

**exploring data** 

tabstat patage, statistics(mean sd max min) 

tabstat patage, statistics(mean sd max min) by(sex1) 
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**labeling values for respiratory distress** 

label define arespins_1 0 "No" 1 "Yes" 

label values arespins arespins_1 

tabulate arespins 

 

**Bar chart of respiratory distress by survival** 

graph bar arespins, over(odead2) ytitle(Proportion of patients with respiratory distress) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**Histogram for patient age (years)** 

histogram patage, bin(15) ytitle(Proportion) xtitle(Patient age (years)) ylabel(, angle(horizontal)) 

graphregion(fcolor(white)) 

 

**Histogram for weight (kg)** 

histogram aweight, bin(20) ytitle(Proportion) xtitle(Weight (kg)) ylabel(, angle(horizontal)) 

graphregion(fcolor(white)) 

 

**Histogram for respiratory rate (per minute)** 

histogram aresp, bin(20) ytitle(Proportion) xtitle(Respiratory rate (per minute)) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**Histogram for systolic blood pressure (mmHg)** 

histogram abloodprsyst, bin(20) ytitle(Proportion) xtitle(Systolic blood pressure (mmHg)) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**Histogram for diastolic blood pressure (mmHg)** 

histogram abloodprdiast, bin(20) ytitle(Proportion) xtitle(Diastolic blood pressure (mmHg)) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**Bar chart of respiratory distress by country** 

graph bar arespins, over(sex1) ytitle(Proportion of patients with respiratory distress) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**scatter plot of weight (kg) against patient age (years)** 
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scatter aweight patage, xtitle(Patient age (years)) ytitle(Weight (kg)) ylabel(, angle(horizontal)) 

graphregion(fcolor(white)) 

 

**univariable logistic regression model***************************************** 

logit arespins patage, or 

logit arespins i.sex1, or 

logit arespins aweight, or 

logit arespins aresp, or 

logit arespins abloodprsyst, or 

logit arespins abloodprdiast, or 

logit arespins bpneum, or 

logit arespins bseps, or 

logit arespins aanaemia, or 

logit arespins acoma, or 

logit arespins ahyperp, or 

logit arespins aconvulsions, or 

logit arespins ashockcomp, or 

logit arespins ashockdecomp, or     

logit arespins aacidosis, or 

logit arespins btransf, or 

logit arespins bvent, or 

logit arespins acurchron_New, or 

logit arespins brenal, or 

logit arespins aprost, or 

 

**multivariable logistic regression model*************************************** 

logit arespins patage aweight aresp abloodprdiast bpneum bseps aanaemia acoma ahyperp 

aconvulsions ashockdecomp aacidosis btransf bvent acurchron_New aprost, or  

 

**generating optimal cutoff point by plotting sensitivity and specificity using lsens** 

lsens, genprob(cutoff) recast(line) ylabel(, angle(horizontal)) graphregion(fcolor(white)) xline(0.15, 

lpattern(dash)) xlab(0 0.15 0.25(0.25)1)  

 

**calculating sensitity, specificity, positive predictive value and negative predictive value** 

estat classification, cutoff(0.15) 
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**predicted probabilities/values for respiratory distress** 

predict arespins_prdct 

 

**plot of ROC** 

roctab arespins arespins_prdct, graph recast(line) rlopts(lcolor(black) lwidth(vthin)) ylabel(, 

angle(horizontal)) graphregion(fcolor(white)) 

 

**Area under the ROC curve** 

roctab arespins arespins_prdct, detail 

 

// development of prognostic scoring system** 

** installation of nomolog for this old version stata-journal** 

net from http://www.stata-journal.com/software 

net cd sj15-2 

net describe st0391 

net install st0391 

window menu append item "stUserGraphics""&Npmogram post logistic regression""dbnomolog" 

window menu refresh 

 

**nomogram code** 

logit arespins patage aweight aresp abloodprdiast bpneum bseps aanaemia acoma ahyperp 

aconvulsions ashockdecomp aacidosis btransf bvent acurchron_New aprost, or  

 

nomolog 

 

**Hosmer-Lemeshow test** 

estat gof 
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APPENDIX B: R Codes 

 
#CLASSIFICATION TREE R CODE – INNOCENT GONDWE 

#Loading libraries 

library(haven) #for importing and reading stata (.dta) dataset 

library(dplyr) #for recoding variables 

library(rpart) #for fitting decision trees 

library(rpart.plot) #for plotting decision trees 

 

#reading dataset from stata 

AQUAMAT_child <- read_dta("H:/INNOCENT GONDWE/SEMESTER 3-

4_Research/DATA/AQUAMAT_child.dta") 

View(AQUAMAT_child) 

 

#cleaning data by replacing missing values 

AQUAMAT_child$aresp[is.na(AQUAMAT_child$aresp)]<-mean(AQUAMAT_child$aresp, 

na.rm=TRUE) 

 

#recoding variable  

AQUAMAT_child %>% mutate(acurchron=recode(acurchron, "2=0; 0=0; 1=1")) 

 

#setting seed  

set.seed(123) 

 

#building the initial tree 

tree <- rpart(arespins ~ 

bpneum+aacidosis+acurchron+ahyperp+bseps+aresp+aconvulsions+aprost, 

data=AQUAMAT_child, control=rpart.control(cp=.0001)) 

 

#viewing results of the initial tree 

printcp(tree) 

 

#identifying best cp value to use 

best <- tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"] 
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#producing a pruned tree based on the best cp value 

pruned_tree <- prune(tree, cp=best) 

 

#plotting the pruned tree 

prp(pruned_tree, 

    faclen=0, #use full names for factor labels 

    extra=1, #display the number of observations that fall in the node 

    branch=1, #produce square shouldered branch lines 

    yesno=2, #write 'yes' and 'no' at all splits 

    roundint=T, #round values to integers at splitting nodes 

    digits=3) #display 3 decimal places in terminal nodes 


