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ABSTRACT

Acute respiratory distress (ARD) is a global health concern due to its high rates of
morbidity and mortality in children. Early identification of the predictors of baseline
ARD is very vital to necessitate timely interventions and improved clinical management
of the condition. This study aimed at establishing a predictive model for predicting
baseline ARD in African children with severe malaria. This retrospective cohort study
used secondary data from ‘African Quinine-Artesunate Malaria Trial’ (AQUAMAT) that
was conducted from 2005 to 2010, among children (<15 years) who had been
hospitalized for severe malaria. The predictors of baseline ARD were determined using
univariable and multivariable binary logistic regression models. A nomogram was
constructed to visualise the predictive model. The Receiver Operating Characteristic
(ROC) curve was plotted to evaluate the discriminative power of the predictive model.
Classification tree analysis was done to classify patients at a higher or lower risk of
developing baseline ARD. The outcome of interest was baseline ARD. The study
included 5,426 children admitted with severe malaria. The multivariable binary logistic
regression model revealed that the major predictors of baseline ARD were pneumonia
[Odds Ratio (OR): 2.49, CI: 1.99 - 3.13, p-value < 0.001], severe acidosis (OR: 2.49, CI:
2.09 - 2.97, p-value < 0.001), patient is currently treated for chronic illness (OR: 2.32,
CI: 1.05-5.14, p-value = 0.038), hyperparasitaemia (OR: 1.96, CI: 1.21 - 3.16, p-value =
0.006), sepsis (OR: 1.46, CI: 1.18 - 1.82, p-value = 0.001), respiratory rate (OR: 1.03,
CIL: 1.03 - 1.04, p-value < 0.001). The predictive model was valuable in predicting
baseline ARD with overall correct classification of 68.72% and area under the ROC
curve of 0.75 (95% CI: 0.73 - 0.77). Classification tree ranked pneumonia, severe
acidosis, hyperparasitaemia, sepsis, respiratory rate as well as severe prostration as major
conditions classifying a patient of being at high risk of developing baseline ARD. These
findings will help medical practitioners in early identification of severe malaria children
who are at high risk of developing baseline ARD. This will necessitate improved
management and timely interventions provided to such patients in order to prevent

development of baseline ARD.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since its initial description in 1967 by Ashbaugh et al. (1967), acute respiratory distress
(ARD) has received widespread recognition as a significant clinical issue with a high
morbidity and mortality burden (Confalonieri et al., 2017). Acute respiratory distress is a
dangerous lung problem that is characterized by inadequate oxygenation and non-
compliant lungs. This disease puts critically ill patients' lives in danger (Feliciano &
Mahapatra, 2017). In ARD, surfactant disintegrates due to disruption of alveolar
epithelial-endothelial permeability barrier leading to accumulation of protein-rich fluid

inside the alveoli which results into hypoxemia (Heidemann et al., 2017).

The most common causes or risk factors of acute respiratory distress are pneumonia, non-
pulmonary sepsis, aspiration of gastric contents, non-cardiogenic shock, pancreatitis,
severe trauma, drug overdose and ischaemia-reperfusion injury (Bos & Ware, 2022;
Feliciano & Mahapatra, 2017; Sweeney & McAuley, 2016). The chance of developing
ARD from an underlying disorder can be increased by certain exposures, such as alcohol
consumption, smoking, and exposure to pollution in the air (Calfee et al., 2015; Moazed
et al., 2022; Reilly et al., 2019; Simou et al., 2018; Ware et al., 2016). According to Gong

et al. (2005) and Toy et al. (2022), transfusion of blood products can lead to ARD and



raise risk when there is an underlying cause. Genetic variability may also enhance the
risk; however, the majority of discovered variations are infrequent and have a low

attributable risk (Reilly et al., 2017).

Acute respiratory distress is a more common health burden worldwide. The incidence of
ARD ranges from 1.5 cases per 100,000 person-years to nearly 79 cases per 100,000
person-years (Brun-Buisson et al., 2004; Rubenfeld et al., 2005). Studies from Brazil
reported incidence rates ranging from 1.8 to 31 per 100,000 person-years (Azevedo et al.,
2013; Caser et al., 2014). A study of patients in 459 intensive care units (ICUs) from 50
countries in 2016 found that 23% of patients on mechanical ventilation and 10% of ICU
patients met the criteria for ARD (Bellani et al., 2016). A total of 10.4% of all ICU
admissions and 23.4% of patients needing mechanical ventilation among 4499 patients
who had acute hypoxemic respiratory failure had ARD. In comparison to South America,
Asia and Africa, higher incidence rates were found in North America, Oceania and

Europe.

In terms of lung maturation with age, developmental stages, epidemiology, comorbidities,
and prognosis, there are significant distinctions between paediatric acute respiratory
distress (PARD) and adult acute respiratory distress (ARD) (Flori et al., 2005; Quasney et
al., 2015; Schouten et al., 2016; Thomas et al., 2013). Children and adults have different
risk factors for developing ARD, and the particular impacts of bacterial or viral causative
agents may contribute to the variability of PARD. In developing nations, including

Africa, one in five instances of acute respiratory infection in children leads in a lower



respiratory tract infection, which accounts for between 11 and 20 million hospitalizations
and 2 million paediatric fatalities annually (Bryce et al., 2005; Williams et al., 2002).
This accounts for 20% of the 10.8 million deaths of children under the age of five that
occur annually in the world (Bryce et al., 2005). According to Jeena (2008), pneumonia is

one of the common causes of acute respiratory distress in children.

In Africa, malaria continues to be a leading cause of illness and mortality in children. An
estimated 619,000 individuals died from malaria worldwide in 2021 (WHO, 2022). There
are four species of the protozoa in the genus Plasmodium, including; Plasmodium
malaria, Plasmodium vivax, Plasmodium ovale, and Plasmodium falciparum, which
cause the acute illness known as malaria. According to Hviid and Jensen (2015),
Plasmodium falciparum is the most virulent malaria-causing species that affects humans,
partly because of its wide range of antigenic diversity and capacity to dwell in the host
tissues' microvasculature. It is believed that the etiology of the disease is largely
influenced by the accumulation of mature Plasmodium falciparum infected erythrocytes
in various tissues, which might cause circulation problems and inflammation (Hviid &

Jensen, 2015).

All deaths are caused by the Plasmodium falciparum infection, which is most common in
Sub-Saharan Africa. About 90% of the world's 300-500 million malaria cases and 1.5-2.7
million annual deaths occur in Sub-Saharan Africa (Breman et al., 2004; Helegbe et al.,
2007). Cerebral malaria, severe malarial anaemia, and respiratory distress are all part of

the clinical symptoms of severe malaria caused by Plasmodium falciparum. Children



from Africa who have respiratory distress (RD), a consequence of severe malaria, have a
very high risk of dying (Shah et al., 2021). A study conducted by Oduro et al. (2007) in
Ghana revealed that severe anaemia (36.5%), respiratory distress (24.4%), and cerebral
malaria (5.4%) are the three most prevalent symptoms of severe malaria. By adolescence,
those who reside in areas with high rates of transmission usually acquire clinical
immunity to severe falciparum malaria (Marsh & Kinyanjui, 2006). However, the burden
of morbidity and mortality in the paediatric population is disproportionately high because

children are at high risk for developing severe malaria.

A study by Blumberg et al. (1996) on “predictors of mortality in severe malaria: a two-
year experience in a non-endemic area” reviewed the clinical profiles and therapy of 28
consecutive patients with severe and complicated malaria admitted to Baragwanath
Hospital ICU in Johannesburg, South Africa over a two-year period from January 1993 to
December 1994. The study found that 13 patients were diagnosed with acute respiratory

distress syndrome (ARDS) out of which eight (8) patients died.

Marsh et al. (1995) studied 1844 children who were admitted to the paediatric ward of
Kilifi District Hospital in Kenya with a primary diagnosis of malaria. It was revealed that
the mortality rate was 3.5% and 84% of the deaths occurred within 24 hours of
admission. These fatalities were associated with four prognostic indicators namely;
impaired consciousness, respiratory distress, hypoglycaemia and jaundice. Despite the
fact that many patients had overlapping symptoms, RD had the greatest mortality rate of

the three syndromes in children.



In the original description of “acute respiratory distress syndrome in adults” by Ashbaugh
and colleagues in 1967, special attention was paid to the inciting illness or injury which
included; severe trauma, viral infection, acute pancreatitis and possible contributing
factors which included; hypotension, acidosis, and fluid overload (Ashbaugh et al., 1967).
That initial description has, over the years, evolved into the American European
Consensus Conference (AECC) definition in 1994 and then the Berlin definition of
ARDS for adults and the Paediatric Acute Lung Injury Consensus Conference (PALICC)
definition of Paediatric Acute Respiratory Distress Syndrome (PARDS) (see, Bernard et
al., 1994; PALICC, 2015; Ranieri et al., 2012). In these definitions, much attention
continues to be paid towards understanding what conditions place patients at particular
risk for ARDS development and what conditions contribute to worse ARDS clinical

outcomes.

Identifying risk factors and understanding which patients are at risk for developing acute
respiratory distress is significantly important to be able to develop preventative and early
interventions. In a bid to identify patients at risk of developing paediatric acute
respiratory distress, Kuhne and Flori (2020), assessed risk factors and etiologies
associated with the development of paediatric acute respiratory distress. It was
determined that paediatric patients with pre-existing immunodeficiencies, for example,
HIV were at an increases risk of both development of acute respiratory distress and worse
outcomes after acute respiratory distress. It was also reported that increased Body Mass
Index (BMI) has been shown to be associated with increased risk of acute respiratory

distress development. Exposure to environmental factors such as smoke, air pollution,



nitrogen dioxide, sulphur dioxide, and particulate matter < 2.5 micrometres were reported

to be significantly associated with ARDS development (Lin et al., 2018).

The Paediatric Acute Respiratory Distress Incidence and Epidemiology (PARDIE) study,
an international observational study, surveyed over 23,000 Paediatric Intensive Care Unit
(PICU) admissions and 12,000 patients requiring mechanical ventilation (Khemani et al.,
2008). Of those patients, 744 (3.2%) were identified as having PARDS based on PALICC
criteria. Among PARDS patients, the most common risk factor was pneumonia or lower
respiratory tract infection (63%), followed by sepsis (19%), aspiration (8%), trauma
(4%), other (3%), drowning (1%), and non-septic shock (1%). The Paediatric Acute and
Critical Care Medicine Asian Network (PACCMAN) published a study in 2018 which
compared “pulmonary” versus “extrapulmonary” ARDS (Kallet et al., 2017). The
“extrapulmonary” group included patients with sepsis, massive transfusions, burns, multi-
trauma, and haemorrhagic shock and comprised 41 (13.4%) of the 307 patients with
PARDS. In this cohort, the extrapulmonary group had higher mortality, higher proportion

of multiple organ dysfunction, and higher median oxygenation index.

Studies have found that acute respiratory distress is a major prognostic indictor of
morbidity and mortality in children with severe malaria (Marsh et al., 1995; Mitran et al.,
2023). Other studies have generated predictive models for predicting acute respiratory
distress in patients with sepsis or pneumonia (Lin et al., 2023; Lv et al., 2024; Watkins et
al., 2012; Xul et al., 2023). However, no predictive model has been developed to predict

baseline acute respiratory distress in children who have severe malaria in Africa. Thus,



this study will embark on predicting baseline acute respiratory distress in severe malaria

African children using appropriate statistical prediction models.

1.2 Problem Statement

Malaria is still a pressing public health concern in the African region despite a 2%
decline in the number of annual deaths since 2015. There were 257,950 paediatric deaths
in Africa in 2019, accounting for 67.2% of all malaria-related deaths across the board
(WHO, 2021). This equates to a daily death toll of almost 707 children under the age of
five (WHO, 2021). The prevalence is very high in Africa due to inadequate health care
services as well as limited resources in the available health facilities. Studies have
indicated that respiratory distress is a major prognostic indicator of morbidity and
mortality in children with severe malaria (Marsh et al., 1995; Mitran et al., 2023). In
developing nations, Africa in particular, one in five instances of acute respiratory
infection in children accounts for between 11 and 20 million hospitalizations and 2
million paediatric fatalities annually (Bryce et al., 2005; Williams et al., 2002). This
accounts for 20% of the 10.8 million deaths of children under the age of five that occur

annually in the world (Bryce et al., 2005).

Studies conducted in Africa have focused on prognostic indicators associated with severe
malaria, that would help predict mortality, of which respiratory distress was found to be a
major prognostic indicator (Blumberg et al., 1996; Marsh et al., 1995; Mitran et al., 2023,
Mzumara et al., 2021). Other studies have generated predictive models for predicting
acute respiratory distress in patients with sepsis or pneumonia (Lin et al., 2023; Lv et al.,

2024; Watkins et al., 2012; Xul et al., 2023). However, no predictive model has been
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developed to predict baseline acute respiratory distress in children who have severe
malaria in Africa. For that reason, this study will embark on predicting baseline acute
respiratory distress in severe malaria African children using appropriate statistical

prediction models.

1.3 Study Objectives

1.3.1 General objective

The general objective of the research is to generate a prediction model to predict baseline

acute respiratory distress in children who have severe malaria in Africa.

1.3.2 Specific objectives

1. Predict baseline acute respiratory distress in a cohort of severe malaria
children using binary logistic regression model and nomogram.

ii.  Calculate measures of goodness-of-fit of the predictive model such as
Hosmer-Lemeshow test, sensitivity, specificity, positive predictive
values and negative predictive values.

iii.  Determine the predictive power of the model using Area Under the ROC
Curve (AUC).

iv.  Classify patients as having a high or low risk of developing baseline

ARD using classification tree.



1.3.3 Study justification

This study is worth conducting because it will:
I.  Assist medical practitioners in early identification of severe malaria
children who are at high risk of developing baseline ARD.
ii.  Help improve management and timely interventions provided to malaria
patients in order to prevent development of baseline ARD.
iii.  Help WHO and/or Ministries of Health in different countries to come up
with health policies and guidelines that guide diagnosis and management
of acute respiratory distress in severe malaria children.

Iv.  Add to the body of knowledge in the scientific academic world.



CHAPTER 2

LITERATURE REVIEW

2.1 Generalized Linear Models

The theory of Generalized Linear Models (GLMs) was first introduced by Nelder and
Wedderburn in 1972 (Nelder & Wedderburn, 1972). The aim of GLMs is to define the
relationship between the observed response/outcome variable and a set of
covariates/explanatory/predictor variables. The outcome variable is seen as a realization
from a random variable. This class of models include those whose single response
variable was assumed to have the variance reflected by a one-parameter exponential
probability distribution. This family of distributions includes the Gaussian or normal,
binomial, Poisson, gamma, inverse Gaussian, geometric, and negative binomial (Hardin
& Hilbe, 2018; Kutner et al., 2004). The most common GLMs in medical applications are
the logistic regression models (for categorical response variable) and Poisson regression
models (for count response variable). There are different forms of logistic regression
models which include: binary (categorical response variable with two possible
outcomes), multinomial (categorical response variable with more than two unordered
outcomes) and ordinal (categorical response variable with more than two ordered
outcomes) logistic regression. The mathematical details of these three forms of logistic
regression models will be discussed in the sections below. This study, in particular,

applies binary logistic regression in predicting baseline acute respiratory distress. That is,
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the response is either a patient has acute respiratory distress or not based on the presented

predictors.

2.2 Logistic Regression Models

A logistic regression model is in the binomial family of generalized linear models.
Logistic regression is a powerful statistical model used for modelling the relationship
between a set of predictor variables and a categorical outcome variable. There are various
forms of logistic regression model, such as binary logistic regression model (with logit or
probit or complementary log-log link), multinomial logistic regression model and ordinal
logistic regression model (with proportional odds) (Kutner et al., 2004; McCullagh &
Nelder, 1989). The choice of a particular type of logistic regression model depends on the
type of the categorical outcome of interest. Various types of logistic regression models

are discussed in the following sections.

2.2.1 Binary logistic regression model
This model becomes handy when modelling events that have binary responses. Examples
of such events, in medical research, include; treatment failure or success, disease status
(yes or no), hospitalisation (yes or no), mortality (dead or alive), among others. This
outcome can be represented by a binary indicator variable taking on dummy values 0 and
1. A binary logistic regression model is based on the following key assumptions:
1. Dichotomous outcome variable. The outcome variable should be measured on a

dichotomous scale, meaning it has only two nominal/categorical values.

11



2. Mutually exclusive and exhaustive categories. The categories of the outcome
variable should be mutually exclusive (no overlap) and exhaustive (cover all
possible outcomes).

3. Independence of observations. The observations (data points) should be
independent of each other. This assumption ensures that the model is not
influenced by repeated measurements or correlated data.

4. No outliers. There should be no extreme outliers in the data that significantly
affect the model’s performance.

5. Linear relationship. Logistic regression assumes a linear relationship between the
log-odds of the outcome and each predictor variable. However, the relationship is
modelled using the logit function (S-shaped curve) rather than a straight line.

6. Linearity of independent variables. The independent variables should have a
linear effect on the log-odds of the outcome. If the relationship is nonlinear,
transformations such as polynomial terms may be needed (Kutner et al., 2004;

McCullagh & Nelder, 1989).

If the outcome variable of a generalized linear regression model has two possible
outcomes such that the probability, P(Y; = 1) = p and P(Y; = 0) = 1 — p, then we need
a transformation that will bound the values in the range of 0 to 1 as probability outside
this range is invalid. Such transformation is necessitated by use of a known monotonic,
one-to-one, differentiable link function g(-) relating the linear predictor to the fitted

values. (Kutner et al., 2004; McCullagh & Nelder, 1989). Because the function is one-to-

12



one, there is an inverse function relating the mean expected response, E[y] = u, to the

linear predictor such that

w=g"'m = Eyl

The commonly used link functions in a binary logistic regression model are as follows:

1.

When the outcome is binary and the interest is on assessing odds ratios, the logit

link function is commonly used. The logit link function is given by

g(w) = log(1 fiui)-

If the outcome variable is considered as obtained by thresholding a normally
distributed latent variable, then a probit link function is appropriate. That is, if
normality is involved in the linear relationship and the interest is in the predictive
and classification value of the model. The probit or inverse normal link function is
given by
g(u) = 7 (wy).

Unlike logit and probit link functions, the log-log function approaches 1 more
sharply than it approaches 0. The log-log link function is particularly useful when
dealing with rare events. These are situations where the outcome (success or event
occurrence) is extremely infrequent, for example, survival after cardiac arrest. It is
also used if the outcome variable exhibits extreme probabilities (either very low
or very high), for instance, success of glaucoma surgery. The log-log link function
is given by

g () = —log[—log(uy)].

13



4. Complementary log-log link function is the complement of the log-log link
function. It is used when dealing with rare events as well as events whose
outcome variable exhibits extreme skewness (either unusually very low or very

high probabilities). The complementary log-log link function is given by

g () = —log[—log(1 — py)].

Let Y be a column vector of length N where each element Y; is a random variable
representing the number of successes for population i. Let the column vector y contain
elements y; representing the observed counts of the number of successes for each
population. Let p be a column vector of length N with elements p = P(Y; = 1), i.e., the
probability of “success” for any given observation in the i®" population. Suppose the
outcome of interest

Y; ~ Binomial(n, p)

for a particular observation i, with a probability mass function

FOIB) = (3) A =P, fory=0,1,2,..,n

where n is the number of trials. Then, a plausible link function is the logit given by

g(p) = log (1%))-

The linear component of the model contains the design matrix and the vector of
parameters to be estimated (Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh &
Nelder, 1989). The design matrix of independent variables X is composed of N rows and
K + 1 columns, where K is the number of independent variables specified in the model.

The parameter vector B is a column vector of length K + 1. There is one parameter

14



corresponding to each of the K columns of independent variable settings in X, plus one
Bo, for the intercept. The logistic regression model equates the logit transform i.e., the

log-odds of the probability of a success, to the linear component as follows

K
lOg(L):XTﬁ: inj:gj i=12,..,N (1)
1-p =
exp(Xo x5 B)) 1

p = =
1T+exp(XioxiiB)) 1+ exp(—X5 i B))

where p is the probability of the “outcome of interest” and the ratio 1%) is called the odds

(Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & Nelder, 1989).

2.2.1.1 Maximum likelihood estimation of parameters

The goal of logistic regression is to estimate K + 1 unknown parameters Sy, 81, B2, -, Bx
in Equation (1). This is achieved using maximum likelihood estimation which entails
finding the set of parameters for which the probability of the observed data is greatest.
Since each y; represents a binomial count of i®population, then, the joint probability

mass function (likelihood function) of the outcome variable Y is

N

e =] [ () prea-prer @

=1
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n;

y_) different ways to arrange
L

where N is the sample size. For each population, there are (

y; successes from among n; trials. Since the probability of a success for any one of the n;
trials is p, then, the probability of y; successes is p”¥i. Likewise, the probability of n; — y;

failures is (1 — p)™7Yi,

The maximum likelihood estimates are the values for f that maximize the likelihood
function in Equation (2). The critical points of a function (maxima and minima) occur
when the first derivative equals 0. If the second derivative evaluated at that point is less
than zero, then the critical point is a maximum. However, attempting to take the
derivative of Equation (2) with respect to B is a difficult task due to the complexity of
multiplicative terms. So, a log-likelihood function is used (Czepiel, 2016; Kutner et al.,

2004; Kutner et al., 2005; McCullagh & Nelder, 1989).

n.
The term (yl) in Equation (2) does not include p, so it is a constant that can be ignored.
l

After rearranging terms, Equation (2) becomes

N

P\ .
v = [(3) a-»m 3)
. -p
i=1
Substituting the relation
K
p
j=0

and

_ exp(X'o x5 B))
P 1+ exp(X, xij B)
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in the first and second term, respectively, of Equation (3) yields

N K Vi

) exp(Tioxi; B) 1\
LBly) = 1;[ exp ;xif A <1 T 1+exp(Ti, X ﬁﬂ) ' @

1+exp(Th, xij8)) TP
and simplifyin
1+exp(2§'{=oxijﬁj) plifying

Replacing 1 in the second bracket of Equation (4) by

yields

N M

K K
L(Bly) = Hexp }’izxij Bi || 1+exp inj B; : (5)
: =

i=1 j=0
Equation (5) is the kernel of the likelihood function to maximize. However, it is still
difficult to differentiate (Czepiel, 2016; Kutner et al., 2005; McCullagh & Nelder, 1989).
However, since the logarithm is a monotonic function, any maximum of the likelihood
function will also be a maximum of the log-likelihood function and vice versa. Thus,

taking the natural logarithm of Equation (5) yields the log-likelihood function as

N K K

l(ﬂ)=zyl' zxijﬁj —mn; -log| 1+ exp injﬁj : (6)

i=1 j=0 j=0

The first-order partial derivative of Equation (6) with respect to each g; is found as

N K
al(ﬁ)=zy'x”_n'_ 1 0 1+ exp Zxﬁ
algj £, i*ij i 1+eXp(Z;'(=oxij [gj) aﬁj 4 ij Pj
N 1 K P K
:ZJ’ixij_ni' K exp( ) Xii B KR injﬁ,-
- 1+exp(2j=0xij ﬁj) = i\
N K
= yer =i exp(Xjcoxy By)
£ e 1+ exp(Xi o x5 B)) Y
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N

= Z YiXij — NipXij. (7)

i=1

Using Newton-Raphson method to determine the critical values of the derivative of the
log-likelihood function, the values of the estimates for B are obtained by setting each of
the K + 1 equations in the derivative of the log-likelihood function in Equation (7) to
zero and solving for each g; (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Each such
solution specifies a critical point i.e., either a maximum or a minimum. The critical point
will be a maximum if the matrix (Hessian matrix) of second-order partial derivatives is
negative definite. That is, if every element on the diagonal of the matrix is less than zero.
It is formed by differentiating each of the K + 1 equations in Equation (7) a second time
with respect to each element of B denoted by B;,. The general form of the matrix of

second-order partial derivatives is

2P 9 [~
dB;oB; OB .=1yl y P

L

R i CLIL P
2, CUap\1 + eXp(Zf:o xij Bj)
N

= —Znixijp(l —P) Xy
i=1
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which is negative definite (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Therefore, the
estimates of B obtained by setting Equation (7) to zero maximize the log-likelihood

function in Equation (6) and hence maximize the likelihood function in Equation (2).

2.2.1.2 Odds ratio and interpretation
The most common interpretable measure of effect from logistic regression model is the
odds ratio. For example, considering a logistic regression model given in Equation (1),
the odds of having acute respiratory distress given a particular predictor variable are

P(Y, = 1]X))
1-P(Y, = 11X)

In order to obtain the effect of a one-unit increase in the predictor variable on the
outcome of interest, a measure known as odds ratio is used and it is calculated as follows:
P(Y; = 1]X; + 1)/

1 —

PO=11X+1D _ g
P(Y; = 1IXL')/1

Odds ratio =

j=01,..,K.
P(Y; = 11X;)

That is, for a one-unit increase in the predictor variable X;, we expect e?i times odds of

obtaining the outcome of interest (having acute respiratory distress).

2.2.2 Multinomial logistic regression model
In a multinomial logistic regression model, the response variable has three or more
categories and there is no natural ordering among these categories. An example, in
medical research, could be predicting the type of disease a patient has, among three
diseases, namely; diabetes, hypertension and renal failure based on age and gender. The

binary logistic model is therefore a special case of the multinomial logistic regression

19



model. The link function is the generalized logit and the random component is the
multinomial distribution. The model differs from the standard logistic model in that the
comparisons are all estimated simultaneously within the same model (Czepiel, 2016;

Kutner et al., 2004).

The key assumptions of a multinomial logistic regression model are as follows:
1. There should be a linear relationship between the log-odds and the predictor
variables.
2. The model assumes that there are no extreme outliers or influential observations
in the dataset.
3. Cases should be independent.
4. There should be no multicollinearity between the independent variables (Czepiel,

2016; Kutner et al., 2004).

Let J represent the number of discrete categories of the outcome variable. Consider a
random variable Y that can take on one of J possible values. If each observation is
independent, then each Y; is a multinomial random variable. The column vector n
contains elements n; which represent the number of observations in population i and that

N .n; = M, the total sample size (Czepiel, 2016; Kutner et al., 2004).

Since each observation consist one of ] possible values for the outcome variable Y, let y
be a matrix with N rows and J — 1 columns. For each population, y;; represents the
observed counts of the j**value of Y;. Also, m is a matrix with N rows and /] — 1 columns

where each element m;; is the probability of observing the jt" value of the response
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variable for any given observation in the it"*population (Czepiel, 2016; Kutner et al.,
2004). The design matrix of predictor variables X contains N rows and K + 1 columns
where K is the number of predictor variables. Let 8 be a matrix with K + 1 rows and ] —
1 columns. For the multinomial logistic regression model, the linear component is
equated to the log of the odds of a j* observation compared to the b*" observation (the
baseline category). The model can then be written as

K
log (E) = log SR N z XikPrj (8)
Tip 1- 25;1 Tty Herky

k=0
fori=1,2,..,Nandj=1,2,..,] — 1.

Solving Equation (8) for ;; and 7, respectively, yields

o = eXp(Zf:o XikPij)
71+ X2 exp (Ko XincBy)

j<]

and

1
1+ 327 exp(Ti_o xueBi)

Tip

2.2.2.1 Maximum likelihood estimation of parameters
For each population, the outcome variable follows a multinomial distribution with |
levels. That is, the joint probability mass function is
N

J
roe =] | —H,,"ly,j,-| [ ©
j=1 -

i=1



The factorial terms in Equation (9) do not contain any terms with m;; as such they are

treated as constants (Czepiel, 2016; Kutner et al., 2004). Therefore, the kernel of the

likelihood function for multinomial logistic regression model is

J
L(BIy) = ﬁﬂni (10)

N J-1 -1
yii  Mi—Xi—q Yij
vy =[] |7 (11)
i=1 j=1
which simplifies to
N J-1 ) 717};
L
L(Bly) = w2
11 Yio1Yij
== Tip
N J-1 - 7'[7;)‘
— ij, i
= 1_[ Tj [ nY (12)
i=1 j=1 j=1"ib

J-1
N T[ij Vij n;
ey =] [ [E) . (13)
i=1 j=1 P
Since
K
T
L exp (Z xikﬁk,-> (14
TTip =0
and

(15)

Tip = - ’
1+ Z;J exp(X R0 XirBrj)
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substitute Equation (14) and (15) in the first and second terms, respectively, of Equation

(13) to get

1 "
(1 + Zf;i exp(TX_, xikﬁkj))

ng

N J-1 K J-1 K
=Hnexp<y112xlkﬁk1>- 1+Zexp<2xikﬁkj> _ (16)

=1 1 k=0 j=1 k=0
Taking the natural log of Equation (16) gives the log-likelihood function as

N J-1 K
() = z (yu Z xzkﬁkj>

i=1j=1

J-1 K
—n;log| 1+ Z exp (Z xikﬁkj> . (17)

j=1 k=0
The goal is to find the values of B which maximise Equation (17). This will be done
using Newton-Raphson method which involves calculating the first and second-order
partial derivatives of the log-likelihood function (Czepiel, 2016; Hossain et al, 2014;

Kutner et al., 2004; Rasha, 2021). The first-order partial derivative of Equation (17) is

P | 1
Brj ; Yo 3121 exp(ZK_o XiB)
i . J-1 K

N ) K X
= VijXig — N — - exp Zxk,Bk Exkﬁk)
; o ‘1 +Z§=1exp(zlk<=0xikﬁk]) ( l ]> aﬁk;( e

=0
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TN1=

n; *ex Xi it X
zyl] Xig — Ny 1+Z EXD(Z xlkﬁk]) p( lkﬁk]) ik

k=0
= Z YVijXik — NiTj Xjg- (18)
i=1

There are (J — 1) - (K + 1) equations in Equation (18) which are set equal to zero and

solved for each S ;. The general form of the matrix of second-order partial derivatives is

given by
N
o’lp) @ Z v — 9 z—n-n--x-
aﬁkja,gk’]’ a,Bk” YijXik — ijtik aﬁk’j’ £ itijrik
N
— an 4 ( exp(Tk=o XixBr;) >
= — Xk -
i=1 T 0B 1+2§=16Xp(21k(=oxikﬁkj)
N
- ‘Z"ixik w5 (1 = ), forj' =j

i=1
which is negative definite (Czepiel, 2016; Hossain et al, 2014; Kutner et al., 2004; Rasha,
2021). Therefore, the estimates of B obtained by setting Equation (18) to zero maximize
the log-likelihood function in Equation (17) and hence maximize the likelihood function

in Equation (10).

2.2.2.2 Odds ratio and interpretation
Odds ratios for each coefficient (for predicting the difference of one category response

from the baseline category) are computed as

P(Y; =J'Ixi+1)/
P(Y; = b|x; + 1)

P(Y; = Jx:
B o = b
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and represent the odds of increase (or decrease) for category j compared with the baseline

category for each unit increase in the predictor variable x;.

2.2.3 Ordinal logistic regression model
An ordinal logistic regression is used to predict an ordinal outcome variable given one or
more predictor variables. In ordinal logistic regression model, the outcome variable has
three or more categories. Unlike, multinomial logistic regression model, there is ordering
among categories in ordinal logistic regression model (Abreu et al., 2008; Hardin &
Hilbe, 2018). An example, in medical research, could be predicting the level of pain (low,
mild, high) one hour after taking a particular type of pain-relieving drug. Other ordered
categories include; tumour stage (local, regional, distant), disability severity (none, mild,
moderate, severe), Likert items (strongly disagree, disagree, agree, strongly agree),

weight status (underweight, normal, overweight, obese), among others.

An ordinal logistic regression model is based on the following key assumptions:

1. The outcome variable is measured on an ordinal scale.

2. One or more of the predictor variables are either continuous, categorical or
ordinal.

3. There is no multicollinearity. There is no correlation between two or more
predictor variables.

4. The response is determined as proportional odds. An ordinal outcome with three
or more categories, the odds ratio for the logistic model represents the odds of the

higher category as compared to all lower categories combined. In other words, it
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is a cumulative odds ratio representing the increased likelihood to the next
highest category relative to the lower categories for each unit increase in the

predictor (Abreu et al., 2008; Hardin & Hilbe, 2018).

Let y; denote the response outcome category for subject i. That is, y; = j means that the
response category for that particular subject is j, where j = 1, 2, ..., c.
The cumulative probabilities are modelled as

Ply;<j)=my +mp + - +my, i=12..,c

where m;;is the probability of subject i to choose category j. Also

exp(a; + x| B)
1+ exp(a; +x7B)’

P(Y, <)) = j=12..,c—1 (19)

is a proportional odds model where a; is the intercept for category j, xTis a vector of
predictor variables and B is a vector of coefficients whose effects are the same for each
cumulative logit. That is, the predictor variables have the same effect on the odds of all
levels of the response. This is called the proportional-odds assumption or parallel-lines
assumption (Abreu et al., 2008; Hardin & Hilbe, 2018).

Taking the logit transformation of both sides of Equation (19) yields cumulative logit link

given by

P, <j Ty + Ty + o + 1
( i ]) < i1 2 l]) j= 1’ 2,...,C.

logit[P(Y; < j)] = log lm =lo T+ + T

The cumulative logit link function is, therefore, given by

TS
Ogll—P(Yi <)

=a; + x| B, j=12,..,c—1.
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2.2.3.1 Maximum likelihood estimation of parameters
Since P(Y; < j) = F(a; + xT B), the likelihood function is given by

N c N c

L@ p) = 1_[ n(”ij)y” = 1_[ H[P(Yi <j)-PY; <j—-DPy

i=1 \ j=1 i=1 \ j=1
where N is the total number of subjects (Abreu et al., 2008; Hardin & Hilbe, 2018). The
log-likelihood function is given by
N ¢
@) =) > yyloglF(a) +2T) ~ F + B (20)
i=1 j=1
The Newton-Raphson method for estimating the parameters is used to determine the roots
of the derivative of the log-likelihood function (Czepiel, 2016). The first derivatives of

Equation (20) with respect to a; and S are, respectively, given as

ol _ zN:zc:yijxik f(a; +x[B) — f(aj_1 + x] B)

TR 21
OB Lo la” (o + x1B) — Flay—s + 21B) @
and
ot _ ZN:{ Yuef (@ + x] B)
0a; L \F(as+x[B) = F(aj_1 + x] B)
3 Yijeif (e + 2] B) }
F(aj, +xTB) —F(aj +xIB)) (22)

The values of interest a; and S, are obtained by setting the first derivatives in Equations

(21) and (22) to zero and solving. Each such root specifies a critical point (either a
maximum or a minimum). The critical point will be a maximum if the matrix of second-

order partial derivatives is negative definite (Golub & Van Loan, 1996). It is formed by
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differentiating Equations (21) and (22) a second time with respect to each element a and

p denoted by a; and S (Abreu et al., 2008; Hardin & Hilbe, 2018).

2.2.3.2 Cumulative odds ratio
For subject i, if x; changes from a to b, then

logit[P(Y; < jlx; = b)] — logit[P(Y; < j|x; = a)]

PO jlx = D) |
P(Y; > jlx; = b)

PE =y
P(Y; > jlx; = )

= (b—a)'B

= log

That is, the cumulative odds ratio is given by

P(Y; Sjlxi=b)/ .
P(Y;>jlx; =b) _

. e -7
P(Y; < jlx;

Cumulative odds ratio = —a
/P(Yi > jlx; = a)

2.3 Diagnostic Accuracy

Diagnostic accuracy measures the ability of a predictive model to detect a disease when it
is present and to detect the absence of a disease when it is absent. This discriminative
ability is assessed by measures of diagnostic accuracy such as sensitivity, specificity,
positive predictive values, negative predictive values and area under the Receiver
Operating Characteristic (ROC) curve (Simundié, 2009). These are discussed in the

following sections.
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2.3.1 Sensitivity and specificity

In 1947, American biostatistician Jacob Yerushalmy coined the words “sensitivity”” and
“specificity” (Yerushalmy, 1947). An ideal predictive model could totally distinguish
between those who have an illness and those who do not. Perfect predicted results that are
above a certain threshold are always indicative of the disease, while those that are below
the threshold are always negative for the disease. Unfortunately, such a flawless
prediction does not exist in reality, and as a result, prediction processes can only partially
distinguish between those who have disease and those who do not. Since patients without
disease might occasionally have above threshold readings of a certain parameter of
interest, then, values above the threshold are not always suggestive of a disease. This
implies a false positive (FP) result. Similarly, patients with the disease may present
readings of the parameter of interest below threshold. This implies a false negative (FN)
result (Simundié, 2009). In light of parameter values of interest, the threshold divides the
population of investigated participants with and without disease into four categories. The
model prediction results are compared with the gold standard results i.e., assumed

accurate results, as presented in a confusion matrix in table 1.

Table 1: A 2 x 2 confusion matrix

Gold standard

Disease No disease
Model Positive TP FP
classification Negative FN TN
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In table 1, true positive (TP) represents a positive model predicted result given that the
subjects have the disease. False positive (FP) represents a positive model predicted result
given that the subjects do not have the disease. True negative (TN) represents a negative
model predicted result given that the subjects do not have the disease and false negative
(FN) represents a negative model predicted result given that the subjects have the disease

(Simundié¢, 2009; Swift et al., 2020).

Sensitivity refers to the probability that a predictive model will return a positive result
when a disease is actually present. Sensitivity is the percentage or proportion of patients
who are truly positive for the disease among all patients who have the disease. From table

1, we calculate sensitivity as

TP
TP+ FN

Sensitivity =
or if positive model predicted result is denoted by T and having a disease on the gold
standard is denoted by D, then

Sensitivity = P(T|D).

Specificity refers to the probability that a predictive model will return a negative result
when a disease is actually absent. Specificity is the percentage or proportion of subjects

who are truly negative for the disease among all subjects who do not have the disease

(Simundi¢, 2009; Swift et al., 2020). From Table 1, we calculate specificity as

TN

Speciﬁcity = m

or if negative model predicted result is denoted by T and not having a disease on the gold

standard is denoted by D, then
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Specificity = P(T|D).

Remarks:

A predictive model with high sensitivity will detect some individuals without the
condition. The predictive model will identify everyone who has the condition as
well as many people who do not. This is crucial if the condition's consequences
for not treating it are severe and/or if there is a treatment that is readily
available, highly effective, and has few negative side effects. However, for healthy
people, this will lead to stress and unneeded follow-up.

A predictive model with high specificity will result in a high number of true
negatives and smaller number of false positives. In this case, subjects identified as
having a disease may be subjected to more testing.

The prevalence of the disease has no effect on sensitivity or specificity, therefore
findings from one study might readily be applied to another context with a
variable prevalence of the condition in the population. However, depending on
the disease spectrum in the examined population, sensitivity and specificity can

vary significantly.

2.3.2 Positive predictive value

Positive predictive value refers to the percentage or proportion of patients with positive

predicted results among all subjects with positive test results. From table 1, we have

TP

Positi icti lue = /———.
ositive predictive value TP + FP
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Positive predictive value is also defined as the probability of having a disease of interest
in a patient with positive predicted result (Simundié, 2009; Swift et al., 2020).
Mathematically,

Positive predictive value = P(D|T).

2.3.3 Negative predictive value

Negative predictive value refers to the percentage or proportion of subjects with negative

predicted results among all subjects with negative test results. From table 1, we have

TN

. - lue = _
Negative predictive value TN T FN

Negative predictive value is also defined as the probability of not having a disease of
interest in a subject with negative predicted result (Simundi¢, 2009; Swift et al., 2020).
Mathematically,

Negative predictive value = P(D|T).

Remarks:

i.  Predictive values are strongly influenced by the prevalence of the disease in the
population under study. Because of this, predictive estimates from one study
should not be used in a situation where the population's prevalence of the disease
is different.

ii.  With an increase in the disease's prevalence in a population, the positive

predictive value rises and the negative predictive value falls.

32



2.3.4 Area Under ROC Curve (AUC)

The Area Under the Curve (AUC) score is the area under the Receiver Operating
Characteristic (ROC) curve, and it measures the ability of the predictive model to
accurately predict classes i.e., a child having baseline acute respiratory distress on not. A
ROC curve plots sensitivity against specificity at different possible classification
thresholds (Simundi¢, 2009; Swift et al., 2020). AUC is defined as the likelihood that the
predictive model will give a higher probability to a random positive observation than to a
random negative observation (Hanley & McNeil, 1982). The AUC score represents the
predictive model's ability to accurately categorize classes on a scale of 0 to 1, with 1
being the best and 0.5 being as good as random choosing. This is a measure used to
assess the accuracy or performance of a predictive model (Simundi¢, 2009; Swift et al.,

2020).

To create a ROC curve, we plot specificity on the x-axis and sensitivity on the y-axis.
The strength of a predictive model’s discriminative power is determined by examining
the shape of a ROC curve and the area under the curve (Simundi¢, 2009). The predictive
model’s ability to distinguish between diseased and non-diseased individuals is improved
by the curve's proximity to the upper-left corner and the size of the area under the curve.
Table 2 describes the relationship between the area under the ROC curve and predictive

model accuracy (Simundié¢, 2009).

Table 2: Area under the ROC curve and predictive model accuracy (Simundié¢, 2009)

AUC value Predictive model accuracy
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09 <AUC<1.0 Excellent
0.8 <AUC <09 Very good
0.7 < AUC < 0.8 Good
0.6 < AUC < 0.7 Sufficient
0.5 < AUC < 0.6 Bad
<0.5 Model not useful

Area under the ROC curve is a generic indicator of predictive model accuracy that is
essential for overall evaluation and for comparing the results of two or more predictive
models. The area under each of the two ROC curves can be compared to determine which
test is more suited to separating the diseased individuals from the non-diseased (Hanley

& McNeil, 1982; Simundi¢, 2009; Swift et al., 2020).

2.4 Classification Tree

Techniques such as multiple linear regression can yield reliable predictive models when
there is a linear relationship between a set of predictor variables and a response variable.
On the other hand, non-linear approaches frequently result in more accurate models when
there is a more complex relationship between a collection of predictor variables and a
response. One such technique is classification and regression trees (CART), which
constructs decision trees that predict the value of a response variable based on a
collection of predictor variables. Regression trees are constructed when the response

variable is continuous. On the other hand, classification trees are constructed when the
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response variable is categorical (Flom, 2018; Loh, 2011). This study will construct a

classification tree since the outcome variable is categorical.

Classification tree is obtained by iteratively partitioning the data space and fitting a basic
prediction model within each partition, leading to a decision tree as a graphical
representation of the partitioning (Flom, 2018; Loh, 2011). Classification trees are used
when the dependent variable can have a finite number of unordered values and the
prediction error is expressed in terms of the cost of misclassification. Graphically, we
begin by grouping together all of the observations and then divide it into two groups by
selecting the best predictor value for the split, which results in two nodes. Then, the
process is repeated until a full tree is obtained. The full tree may, sometimes, overfit the

data. Therefore, the best tree is obtained by pruning (Flom, 2018; Loh, 2011).

2.4.1 Classification tree algorithm

In a classification problem, there is a training sample of n observations on a response or
class variable Y and p predictor variables, X, X5, ..., X,,. The goal is to find a model for
predicting the values of Y from new X values (Loh, 2011). A simple tree structure is

defined as

yiif % <5
y(x1,x3) =4 Y2 if X1 > syand x; <5,
y3 if X1 > sy and x5 > S,.
The objective of a classification tree is to estimate a binary tree structure. This is

achieved by performing three algorithms, namely; tree growing: step-optimal recursive

partition, tree pruning and obtaining the honest tree. Tree pruning and obtaining the
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honest tree are meant to minimise overfitting i.e., growing trees with no external validity

(Mora, 2019).

Tree growing requires training or learning sample. At iteration i with tree structure T;,
consider all terminal nodes t*T;. In a classification tree, we let i(T;) to be an overall
impurity measure using gini or entropy index. The best split at iteration i identifies the
terminal node and split criterion that maximizes
i(T;) — i(Tita).
Recursive partitioning ends with the largest possible tree, T, 4, Where there are no nodes
to split or the number of observations reach a lower limit also referred to as splitting rule.
In this regard, T4, Will usually be too complex (overfit) because it has no external
validity and some terminal nodes should be aggregated (Mora, 2019). Besides, a more
simplified structure will normally lead to more accurate estimates since the number of
observations in each terminal node grows as aggregation takes place. In order to avoid
overfitting, classification tree algorithm identifies a sequence of nested trees that results
from recursive aggregation of nodes from T,,,, with a clustering procedure. For a given
value a, let R(a,T) = R(T) + «|T| where |T| denotes the number of terminal nodes, or
complexity, of tree T and R(T) is the misclassification rate (Mora, 2019). The optimal
tree for a given a, T (a), minimises R(a, T) within the set of subtrees of T;,,,. Pruning
identifies a sequence of real positive numbers {@g, @y, ..., @y} such that a; < @, and
Tmax = T(ao) - T(ay) - T(az) - -+ - {root}.

Out of the sequence of optimal trees, {T(aj)}j, Tinax has lowest R(T) in the learning
sample by construction and R() increases with a (Mora, 2019).
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The honest tree algorithm chooses the simplest tree that minimizes

R(T) +s xSE(R(T)), s=0.
With partitioning into a learning and a test sample, on one hand, R(T) and SE (R (T)) are
obtained using the test sample. On the other hand, with V-fold cross validation, the
sample is randomly partitioned V times into a learning and a test sample. The measures
a;, R(T) and SE (R (T)) are obtained through averaging of results in the V partitions

(Mora, 2019).

2.5 Review of studies that applied binary logistic regression model

Marsh et al. (1995) studied 1844 children (mean age, 26.4 months) with a primary
diagnosis of malaria who were admitted in the paediatric ward of Kilifi District Hospital
in Kenya. The primary goal of the study was to determine indicators of life-threatening
malaria in African children. It was found that the mortality rate was 3.5% (95% CI of 2.7
- 4.3%), and 84% of the deaths occurred within 24 hours of admission. The study
employed a binary logistic regression model in order to determine key prognostic
indicators of death (outcome variable) from malaria. Four indicators were established,
namely; respiratory distress (relative risk, 3.9; 95% CI, 2.0-7.7), impaired consciousness
(relative risk, 3.3; 95% CI, 1.6-7.0), hypoglycaemia (relative risk, 3.3; 95% ClI, 1.6-6.7),
and jaundice (relative risk, 2.6; 95% CI, 1.1-6.3). The 54 out of 64 children who died
were those with respiratory distress (n = 251; case fatality rate, 13.9%) or impaired

consciousness (n = 336; case fatality rate, 11.9%), or both.
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Mzumara et al. (2021) used binary univariable and multivariable logistic regression
models to identify prognostic factors for severe metabolic acidosis and uraemia in 5425
children from nine African countries who had severe falciparum malaria. The results
indicated the prognostic features of severe metabolic acidosis were deep breathing (OR:
3.94, CI 2.51-6.2), hypoglycaemia (OR:5.16, CI 2.74-9.75), coma (OR: 1.72 CI 1.17-
2.51), respiratory distress (OR: 1.46, CI 1.02-2.1) and prostration (OR: 1.88, CI 1.35-
2.59). Prognostic features associated with uraemia were coma (3.18, CI 2.36-4.27),
prostration (OR: 1.78 CI 1.37-2.30), decompensated shock (OR: 1.89, CI 1.31-2.74),
black water fever (CI 1.58, CI 1.09-2.27), jaundice (OR: 3.46 CI 2.21-5.43), severe
anaemia (OR: 1.77, CI 1.36-2.29) and hypoglycaemia (OR: 2.77, CI 2.22-3.46). Results
indicated that the strongest predictors of severe metabolic acidosis were hypoglycaemia
and deep breathing. On the other hand, the strongest predictors of uraemia were jaundice,

coma and hypoglycaemia.

Xu et al. (2023) developed a prediction model for predicting the risk of acute respiratory
distress syndrome in sepsis patients. This retrospective cohort study recruited a total of
16,523 sepsis patients who were randomly divided into the training and testing sets. The
outcome of interest was the occurrence of ARDS for ICU patients with sepsis. Univariate
and multivariate logistic regression analyses were used in the training set to identify the
factors that were associated with ARDS risk, which were adopted to establish the
nomogram. The receiver operating characteristic and calibration curves were used to
assess the predictive performance of nomogram. Results showed that a total of 2422

(20.66%) sepsis patients resulted in ARDS. It was found that that body mass index,
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respiratory rate, urine output, partial pressure of carbon dioxide, blood urea nitrogen,
vasopressin, continuous renal replacement therapy, ventilation status, chronic pulmonary
disease, malignant cancer, liver disease, septic shock and pancreatitis might be predictors.
The area under the curve of developed model were 0.811 (95% CI 0.802—-0.820) in the

training set and 0.812 (95% CI 0.798-0.826) in the testing set.

There has been an increase in the number of human adenovirus (HAdV)-related
pneumonia cases in immunocompetent adults and acute respiratory distress syndrome in
these patients is the predominant cause of HAdV-associated fatality rates. Based on this
background, Lin et al. (2023) developed “a prediction model for acute respiratory distress
syndrome in immunocompetent adults with adenovirus-associated pneumonia”. The
study used data from immunocompetent adults with HAdV-pneumonia between June
2018 and May 2022 in ten tertiary general hospitals in central China which was analysed
retrospectively. The prediction model of HAdV-related ARDS was developed using
multivariate stepwise logistic regression and visualized using a nomogram. Out of 102
patients with adenovirus pneumonia, 41 (40.2%) developed ARDS. Overall, most
patients were male (94.1%), the median age was 38.0 years. Results of a multivariate
logistic regression model indicated that dyspnea, Sequential Organ Failure Assessment
(SOFA) score, lactate dehydrogenase (LDH) and mechanical ventilation status were
independent risk factors for the development of ARDS. Using these factors, a nomogram
was established with an associated concordance statistic of 0.904 (95% CI 0.844—0.963).

The nomogram was meant to help predict early HAdV-related ARDS.
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Community-acquired pneumonia (CAP) is a global health concern due to its high rates of
morbidity and mortality. Bacterial pathogens are common causes of CAP. It is one of the
most common causes of acute respiratory distress syndrome (ARDS). In a quest to ensure
early identification of the occurrence and effective prevention of ARDS in patients with
bacterial pneumonia, Lv et al. (2024) did a study aimed at establishing a predictive model
for ARDS in patients with bacterial pneumonia. The study used clinical data of
hospitalized patients with bacterial pneumonia in Affiliated Huzhou Hospital of Zhejiang
University School of Medicine from January 2022 to November 2022. The independent
risk factors for ARDS in patients with bacterial pneumonia were determined by using
univariate and multivariate binary logistic regression analyses. The nomogram was
constructed to display the predictive model, and the receiver-operating characteristic
curve was plotted to evaluate the predictive value of ARDS. This study included 254
patients with bacterial pneumonia, of which 114 developed ARDS. The multivariate
logistic regression analysis revealed that age (OR = 1.041, p = 0.003], heart rate (OR =
1.020, p = 0.028), lymphocyte count (OR = 0.555, p = 0.033), white blood cell count (OR
= 1.062, p = 0.033), bilateral lung lesions (OR = 7.352, p = 0.011) and pleural effusion
(OR = 2.512, p = 0.002) were the independent risk factors for ARDS. The predictive
model was constructed based on the six independent factors and it gave AUC value of
0.794. It was concluded that the predictive model was beneficial to evaluate the disease
progression in patients with bacterial pneumonia and identify ARDS. Also, the
nomogram would help doctors predict the incidence of ARDS and conduct treatment as

early as possible.
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Malaria is still a pressing public health concern in the African region. There were
257,950 paediatric deaths in Africa in 2019, accounting for 67.2% of all malaria-related
deaths across the board (WHO, 2021). This equates to a daily death toll of almost 707
children under the age of five (WHO, 2021). The prevalence is very high in Africa due to
inadequate health care services and limited resources in health facilities. Literature has
shown that there is a close association between malaria and the insurgence of acute
respiratory distress. Several studies have been conducted focusing on determining risk
factors associated with the development of acute respiratory distress in children
worldwide so as to be able to develop preventative and early intervention measures.
Prediction models have also been developed to predict the risk of developing acute
respiratory distress in pneumonia, sepsis and trauma patients. However, no study has so
far focused on developing a prediction model of baseline acute respiratory distress in
African children who have severe falciparum malaria. For that reason, this study will
embark on predicting baseline acute respiratory distress in African children who are

diagnosed with severe malaria using statistical prediction models.
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CHAPTER 3

METHODOLOGY

3.1 Study Design

This is a secondary retrospective analysis of a multicenter, open-label ‘African Quinine-
Artesunate Malaria Trial” (AQUAMAT) that was conducted from October 3, 2005, to
July 14, 2010, among children (<15 years) who had been hospitalized for severe malaria.
Eleven centres from nine African nations participated including; Mozambique, The
Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the Democratic
Republic of the Congo (Dondorp et al., 2010). Inclusion criteria for children under 15
years old were a positive rapid diagnostic test for Plasmodium falciparum lactate
dehydrogenase, clinical judgment of the admitting physician that the patient had severe
malaria, and fully informed written consent from the patient or a guardian. Patients who
had a positive malaria test and at least one of the WHO symptoms were considered to
have severe malaria (Dondorp et al., 2010). Patients who had a compelling history of
receiving parenteral quinine or an artemisinin derivative for more than 24 hours prior to

admission were excluded from the study.

The AQUAMAT recruited 5426 children with 2713 patients in the artesunate arm and
2713 patients in the quinine arm (Dondorp et al., 2010; Mzumara et al., 2021). The

participating countries and their corresponding number of subjects are as follows:
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Mozambique (332, 12%), The Gambia (252, 9%), Ghana (218, 8%), Kenya (223, 8%),
Tanzania (732, 27%), Nigeria (224, 8%), Uganda (330, 12%), Rwanda (192, 7%), and the
Democratic Republic of the Congo (210, 8%). The main outcome measure of interest was
to compare in-hospital mortality between treatments using intention-to-treat. Incidence of
severe neurological problems and a combined outcome measure of mortality and severe
persistent neurological sequelae were used as secondary outcome measures. The trial
supported the use of parenteral artesunate in the treatment of Plasmodium falciparum in

children worldwide (Dondorp et al., 2010).

3.2 Variables

3.2.1 Outcome variable

This study is aimed at predicting baseline acute respiratory distress in African children
who have severe malaria. As such, the outcome variable of interest is baseline acute
respiratory distress. This variable has binary outcomes (having baseline acute respiratory

distress or not).

3.2.2 Predictor variables

Studies of children who were admitted to hospitals with a primary diagnosis of malaria
revealed that fatalities were mainly associated with respiratory distress and impaired
consciousness among other minor factors (Marsh et al., 1995; Oduro et al., 2007; Shah et
al., 2021). According to Dondorp et al. (2010), WHO signs of severe falciparum malaria

are plasma base excess less than —3.3 mmol/L, Glasgow coma scale less than 11 of 15 or
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Blantyre coma scale less than 3 of 5 in preverbal children, haemoglobin less than 50 g/L
and parasitaemia greater than 100,000 parasites per uL, blood urea greater than 10
mmol/L, compensated shock (capillary refill > 3 or temperature gradient on legs, but no
hypotension), decompensated shock, systolic blood pressure less than 70 mm Hg and
cool peripheries, asexual parasitaemia more than 10%, visible jaundice and more than
100,000 parasites per uL, plasma glucose less than 3 mmol/L and respiratory distress,
defined as costal indrawing, use of accessory muscles, nasal alar flaring, deep breathing,

or severe tachypnoea.

Based on literature findings on risk factors associated with acute respiratory distress, the
Paediatric Acute Lung Injury Consensus Conference (PALICC) definition of Paediatric
Acute Respiratory Distress Syndrome (PARDS) and WHO signs of severe falciparum
malaria, the candidate demographic and clinical predictor variables for the outcome of
interest (baseline acute respiratory distress), in this study, are patient age (years), sex,
weight (kg), respiratory rate (per minute), systolic blood pressure (mmHg), diastolic
blood pressure (mmHg), pneumonia, sepsis, symptomatic severe anaemia (severe pallor
combined with respiratory distress), coma at admission (GCS < 10, BCS < 2),
convulsions > 30 minutes, compensated shock (capillary refill > 3 sec temperature
gradient), decompensated shock (adults: systolic BP< 80 mmHg, children: systolic BP <
70 mmHg), hyperparasitaemia (> 500 parasites per high powered field), severe acidosis:
deep breathing, blood transfusion, mechanical ventilation, patient is currently treated for
chronic illness, renal failure and severe prostration (not able to breastfeed < 6m, or able

to sit > 6m).
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3.3 Statistical Analysis

Data exploratory analysis and visualization was done using approaches like tables,
histograms and bar graphs in order to gain insight into the data. Since the response
variable of interest, in this study, is categorical with two possible outcomes, a binary
logistic regression model is a reasonable predictive model in predicting baseline acute

respiratory distress based on demographic and clinical predictor variables.

3.3.1 Univariable binary logistic regression model

To determine potential predictors of baseline acute respiratory distress, first a univariable

binary logistic regression model was used. The model is given by

p .
log (m) = BO + ﬁlxl'l L= 1, 2, ,N

exp(Bo + B1Xi1) _ 1
1+ exp(Bo + B1Xi1) 1+ exp(—(Bo + B1Xi1))

p(Y; = outcome of interest|x;;) =

where p is the probability of observing the outcome variable of interest (a patient having
acute respiratory distress), B, is the intercept, B, is the coefficient which relates a

response and a predictor variable and X;; is a predictor variable.

Predictor variables and some patient demographics which were statistically significant, at
5% level of significance, in the univariable model were included in the multivariable
binary logistic regression model (predictive model) using forward stepwise approach.

The multivariable binary logistic regression model is discussed below:
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3.3.2 Multivariable binary logistic regression model

Let Y be a column vector of length N where each element Y; is a random variable
representing the number of successes for population i. Let the column vector y contain
elements y; representing the observed counts of the number of successes for each
population. Let p be a column vector of length N with elements = P(Y; = 1) , i.e., the
probability of “success” for any given observation in the i" population. Suppose the
outcome of interest

Y; ~ Binomial(n, p)

for a particular observation i, with a probability mass function

fOIB) = (3) A =p)", fory=0,1,2,..,n

where n is the number of trials. Then, a plausible link function is the logit given by

9(p) = log (1%)

The linear component of the model contains the design matrix and the vector of
parameters to be estimated (Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh &
Nelder, 1989). The design matrix of predictor variables X is composed of N rows and
K + 1 columns, where K is the number of predictor variables specified in the model. The
parameter vector f is a column vector of length K + 1. There is one parameter
corresponding to each of the K columns of predictor variable settings in X, plus one f3,,
for the intercept. The logistic regression model equates the logit transform i.e., the log-

odds of the probability of a success, to the linear component as follows
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K
j=0

exp(Zj—io Xij IBj) _ 1
1+ exp(Z;(:O xijBj) 1+ exp(— Zf:o xi Bj)

p(Y; = outcome of interest|x;;) =

where p is the probability of the “outcome of interest” and the ratio 1%} is called the odds

(Hardin & Hilbe, 2018; Kutner et al., 2004; McCullagh & Nelder, 1989).

3.3.2.1 Maximum likelihood estimation of parameters

The goal of logistic regression is to estimate K 4+ 1 unknown parameters B, 81, B2, -, Bx
in Equation (23). This is achieved using maximum likelihood estimation which entails
finding the set of parameters for which the probability of the observed data is greatest.
Since each y; represents a binomial count of i®population, then, the joint probability

mass function (likelihood function) of the outcome variable Y is

N

Ly = | [ ()i - (28

i=1

n;

y-) different ways to arrange
4

where N is the sample size. For each population, there are (

y; successes from among n; trials. Since the probability of a success for any one of the n;
trials is p, then, the probability of y; successes is p”¥i. Likewise, the probability of n; — y;

failures is (1 — p)™7Yi,
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The maximum likelihood estimates are the values for f that maximize the likelihood
function in Equation (24). The critical points of a function (maxima and minima) occur
when the first derivative equals 0. If the second derivative evaluated at that point is less
than zero, then the critical point is a maximum. However, attempting to take the
derivative of Equation (24) with respect to f is a difficult task due to the complexity of
multiplicative terms. So, a log-likelihood function is used (Czepiel, 2016; Kutner et al.,

2004; Kutner et al., 2005; McCullagh & Nelder, 1989).

n

The term (y

l) in Equation (24) does not include p, so it is a constant that can be ignored.
l

After rearranging terms, Equation (24) becomes

N

we = [(755) a-»r (25)

i=1

Substituting the relation

K
p
Jj=0
and

_ exp(Xo x5 B))
P 1+ exp(X, xij )

in the first and second term, respectively, of Equation (25) yields

N K Vi n;

~ eXp(Zj'(:o Xij Bj)
LBly) = 1:1[ exp ;xii B (1 1+ exp (X xij 3j)> . 20
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1+exp(Th, xij8)) T
and simplifyin
1+6Xp(25'(=oxijﬁj) plifying

Replacing 1 in the second bracket of Equation (26) by

yields

—n:
N K K t

L(ﬁb’):nexp Yizxij.gj 1+exp injﬁj : (27)
=0

i=1 j=0
Equation (27) is the kernel of the likelihood function to maximize. However, it is still
difficult to differentiate (Czepiel, 2016; Kutner et al., 2005; McCullagh & Nelder, 1989).
Since the logarithm is a monotonic function, any maximum of the likelihood function
will also be a maximum of the log-likelihood function and vice versa. Thus, taking the
natural logarithm of Equation (27) yields the log-likelihood function as
N K K

l(ﬁ)Zz}’i zxijﬁj —n; - log| 1+ exp zxijﬁj : (28)

i=1 j=0 j=0

The first-order partial derivative of Equation (28) with respect to each g; is found as

al(ﬁ):zy_x_._n,_ 1 0 1+ exp ix,.ﬁ.
3,3]' £, i*ij ] + exp(Zﬁo Xij ,3]) aﬁj 4 ij Pj
N 1 K P K
= ZJ’ixij g K Fexp Xij By K z Xij Bj
- 1+ exp(zjzo Xij ﬁj) pr i\

N
— Z-’y.x.. — n. . eXp(Z‘Ii{ZOXij ﬁj) lx..
Lo Tt exp(Eox B)

N
= 2 YiXij — NbXj. (29)
i=1

Using Newton-Raphson method to determine the critical values of the derivative of the

log-likelihood function, the values of the estimates for B are obtained by setting each of
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the K + 1 equations in the derivative of the log-likelihood function in Equation (29) to
zero and solving for each g; (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Each such
solution specifies a critical point. The critical point will be a maximum if the matrix
(Hessian matrix) of second-order partial derivatives is negative definite. That is, if every
element on the diagonal of the matrix is less than zero. It is formed by differentiating
each of the K + 1 equations in Equation (29) a second time with respect to each element

of B denoted by ;. The general form of the matrix of second-order partial derivatives is

22(B) 0 [~
= Z YiXij — NipXij
ap;jop;: AP :

i=1
N K
) _an 9 ( exp(Xj=o Xij B)) )
Z, iXij By \1+ exp(Z;{:o Xij Bj)
N
= —Znixijp(l —-p) Xijl-
i=1

which is negative definite (Blei, 2015; Czepiel, 2016; Kutner et al., 2005). Therefore, the
estimates of B obtained by setting Equation (29) to zero maximize the log-likelihood

function in Equation (28) and hence maximize the likelihood function in Equation (24).
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3.3.2.2 Odds ratio and interpretation
The most common interpretable measure of effect from logistic regression model is the
odds ratio. For example, considering a binary logistic regression model given in Equation
(23), the odds of having acute respiratory distress given a particular predictor variable are

P(Y = 11X
1-P; = 1]X)

In order to obtain the effect of a one-unit increase in the predictor variable on the

outcome of interest, a measure known as odds ratio is used and it is calculated as follows:

P(Y; = 1|X; + 1)
1-PY=1X;+1) _ ,

e’ =0,1,..,K.
P(Y; = 11X) !
1= P(Y; = 11X)

That is, for a one-unit increase in the predictor variable X;, we expect e?i times odds of

Odds ratio =

obtaining the outcome of interest (baseline acute respiratory distress).

In order to visualise the prediction model, a nomogram was plotted. A nomogram ranks
the importance of a predictor variable in predicting the outcome (baseline acute
respiratory distress) in the context of the other predictor variables in the model. Each of
the predictor variables included in the predictive model were arranged one by one on a
horizontal plane with its scoring system, ranging from 0 to 10, at the bottom. The total
score ranged from 0 to 27. The most important predictors in predicting the outcome of

interest have higher scores.

The goodness-of-fit for the predictive model given by Equation (23) was assessed using

Hosmer-Lemeshow goodness-of-fit test. This statistical test measures the correspondence
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of the observed and predicted values of the outcome variable. A better model fit is
characterized by insignificant differences between the observed and predicted values. It
tests the hypothesis H,: there is no difference between the predicted and observed values
against H,: there is a difference between the predicted and observed values. To assess
performance of the predictive model, measures of diagnostic accuracy such as sensitivity,
specificity, positive predictive values, negative predictive values and area under the ROC
curve (AUC) were computed. The predictive model with AUC value closer to 1 has a
high discriminating power. That is, it has a high ability to correctly distinguish between a
patient with baseline acute respiratory distress and a patient without the condition. On the
other hand, an AUC value of 0.5 shows that the predictive model makes random choices
whereas AUC value below 0.5 indicates that the predictive model is not useful.
Classification and regression tree (CART) was also used to predict the outcome of
interest based on the presented predictor variables. Classification and regression tree
methodology is one of the oldest and most fundamental algorithms. It is used to predict
outcomes based on certain predictor variables. The classification and regression tree is
also used in machine learning to create predictive models that can be used to make

predictions about data.

All the analyses were implemented in Stata Software Package version 17.0 and R

Software Package version 4.2.1.
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3.4 Ethical Considerations

AQUAMAT study ethical approval registered under ISRCTN50258054, was obtained
from each participating institutional or national ethics committee in addition to the
Oxford Tropical Research Ethics committee (Dondorp et al., 2010). The use of data for
this study was approved by the Oxford-Mahidol research Unit Data Access Committee
through an application for ‘Datasets under the Custodianship of Mahidol Oxford Tropical

Medicine Research Unit (MORU) Tropical Network’.
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CHAPTER 4

RESULTS

4.1 Exploratory Data Analysis

This study is aimed at predicting baseline acute respiratory distress in African children
who have severe malaria. The study used AQUAMAT dataset comprising of 5426
children (<15 years) who had been hospitalized for severe malaria from eleven centres
from nine African participating countries, namely; Mozambique, The Gambia, Ghana,
Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the Democratic Republic of the Congo
(Dondorp et al., 2010). These patients were randomly assigned to two treatment arms,
namely; the artesunate arm and the quinine arm. The baseline characteristics of the

subjects were collected at admission as presented in Table 3.

Table 3 shows that there were no significant differences between patients assigned to the

artesunate arm and quinine arm. This shows that recruitment of study participants into the

treatment arms was balanced.

Table 3: Baseline characteristics of patients recruited in the AQUAMAT trial

Variable Total Artesunate Quinine
Sample size N=5,426 N=2,713 N=2,713
Country
Congo 422 (8%) 212 (8%) 210 (8%)
Gambia 502 (9%) 250 (9%) 252 (9%)
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Ghana

Kenya

Mozambique

Nigeria

Rwanda

Tanzania

Uganda
Patient age in years (Median, IQR)
Weight (kg) (Mean, SD)
Sex

female

male
Respiratory rate (per minute) (Mean, SD)
Systolic blood pressure (mmHg) (Mean, SD)
Diastolic blood pressure (mmHg) (Mean, SD)
Pneumonia
Sepsis
Symptomatic severe anaemia (severe pallor

combined with respiratory distress)

Respiratory distress: Costal indrawing/recession,

respiratory insufficiency
Coma at admission (GCS <= 10, BCS <= 2)
Convulsions > 30 minutes
Hyperparasitaemia (>500 parasites

per high powered field)
Compensated shock (capillary refill >= 3 sec

temperature gradient)

Decompensated shock (Adults: systolic BP< 80mmHg,

Children: systolic BP < 70 mmHg)

436 (8%)
442 (8%)
664 (12%)
450 (8%)
386 (7%)

1,461 (27%)
663 (12%)
2 (1-4)

12 (5)

2,611 (48%)

2,815 (52%)
47 (14)

95 (14)

56 (13)
447 (8%)

653 (12%)

2,213 (41%)

867 (16%)

1,823 (34%)

1,692 (31%)

100 (2%)

485 (9%)

178 (3%)

218 (8%)
219 (8%)
332 (12%)
226 (8%)
194 (7%)

729 (27%)
333 (12%)
2 (1-4)

12 (5)

1,316 (49%)
1,397 (51%)
47 (14)

95 (14)

56 (13)

225 (8%)

300 (11%)

1,131 (42%)

439 (16%)

881 (32%)

812 (30%)

44 (2%)

233 (9%)

90 (3%)

218 (8%)
223 (8%)
332 (12%)
224 (8%)
192 (7%)
732 (27%)
330 (12%)
2 (1-4)

13 (5)

1,295 (48%)
1,418 (52%)
47 (14)

95 (14)

56 (13)

222 (8%)

353 (13%)

1,082 (40%)

428 (16%)

942 (35%)

880 (32%)

56 (2%)

252 (9%)

88 (3%)



Suspected severe acidosis: Deep breathing 938 (17%) 443 (16%) 495 (18%)

Blood transfusion 2,982 (55%) 1,487 (55%) 1,495 (55%)
Mechanical ventilation 55 (1%) 23 (1%) 32 (1%)
Currently treated for chronic illness 39 (1%) 16 (1%) 23 (1%)
Renal failure 16 (0%) 8 (0%) 8 (0%)

Severe prostration (Not able to breastfeed < 6m,

or able to sit > 6m) 2,974 (55%) 1,505 (55%) 1,469 (54%)

Data are presented as mean (SD) or median (IQR) for continuous measures, and n (%) for categorical

measures.

Table 4 indicates that, of the 5426 patients recruited in the trial, 867 (15.98%) had
respiratory distress whereas 4559 (84.02%) did not have respiratory distress. Table 3
shows that there was no significant difference between children with respiratory distress
in the artesunate arm and those in the quinine arm. That is, 439 (16%) children in the

artesunate arm and 428 (16%) in the quinine arm.

Table 4: Children with respiratory distress in the AQUAMAT trial

Respiratory distress Frequency Percent Cumulative
No 4,559 84.02 84.02
Yes 867 15.98 100.00
Total 5,426 100.00

Exploring patients’ age distribution by gender shows that females have the mean age of
2.85 years with a standard deviation of 2.32 years while males have the mean age of 2.92
years with a standard deviation of 2.38 years. The maximum registered age in either sex
was 14 years. These age statistics reflect no significant difference between female and

male patients recruited in the trial as presented in Table 5.
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Table 5: Age statistics of female and male patients in the AQUAMAT trial

Sex Mean SD Max Min
female 2.85 2.32 14 0
male 2.92 2.38 14 0
Total 2.89 2.35 14 0

Figure 1 is a bar graph that depicts proportion of patients with baseline acute respiratory
distress who died or survived. The graph shows that a larger proportion of patients
diagnosed with acute respiratory distress died as compared to a smaller proportion that

survived.
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Proportion of patients with respiratory distress

Patient died Patient survived

Figure 1: Proportion of patients with acute respiratory distress who died or survived

It is evident from Figure 1 that acute respiratory distress is predictive of high mortality in
severe malaria children. Therefore, there is great need to determine risk factors associated
with baseline acute respiratory distress and generate a predictive model so as to better
manage the condition and be able to develop preventative and early intervention

measurcs.

The histogram in Figure 2 shows that age of patients recruited in the AQUAMAT trial is
skewed to the right. This implies that a lot of patients had their ages concentrated around

0 to 5 years with about 23% of them being around 2 years old. Less than 3% of the
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patients were aged between 10 and 15 years in the trial. Presenting median (IQR) in the

table of baseline characteristics is reasonable for this non-normal kind of distribution.

.25

.15

Proportion

.05+

0 T T T
0] 5 10
Patient age (years)

Figure 2: Histogram of patients’ age (in years) distribution

Results in figure 2 imply that this study focuses on baseline acute respiratory distress in
children who are different from adults, in terms of lung maturation with age,

developmental stages, epidemiology, comorbidities, and prognosis.

Figure 3 shows that weight (kg) of the patients recruited in the trial was slightly skewed
to the right. Most of the patients had their weight between 5 kg and 20 kg with the largest
proportion around 10 kg to 12 kg. A very small proportion had their weights between 25

kg and 35 kg. This is typical for this study which involves children.
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Figure 3: Weight (kg) of patients in AQUAMAT trial

Figure 4 looks into respiratory rate (per minute) of patients recruited in the AQUAMAT
trial. The histogram shows that most of the patients in the study had their respiratory rate
between 30 and 60 per minute with the largest proportion having respiratory rate of 42

per minute. The distribution seems to be approximately mound-shaped.
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Figure 4: Respiratory rate (per minute) of patients recruited in the AQUAMAT trial
Figure 5 is a histogram presenting systolic blood pressure (mmHg) of patients recruited
in the trial. The distribution is approximately normally distributed. Patients have their

systolic blood pressure between 50 mmHg and 150 mmHg. The largest proportion of the

patients have their systolic blood pressure around 90 mmHg.
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Figure 5: Systolic blood pressure (mmHQ) of patients recruited in the AQUAMAT trial
Figure 6 presents diastolic blood pressure (mmHg) of patients recruited in the
AQUAMAT trial. The distribution is approximately normally distributed. Patients have

their diastolic blood pressure between 20 mmHg and 100 mmHg. The largest proportion

of the patients have their diastolic blood pressure around 55 mmHg.
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Figure 6: Diastolic blood pressure (mmHQ) of patients recruited in the AQUAMAT trial
A bar graph in figure 7 considers the proportion of females and males who presented
acute respiratory distress in the trial. The figure indicates that there were slightly more

females who presented respiratory distress: costal indrawing/recession/respiratory

insufficiency as compared to their male counterparts.
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Figure 7: Proportion of patients with respiratory distress against sex

Figure 7 may suggest that acute respiratory distress has a slightly disproportionate effect
on male and female patients with more female patients being affected as compared to

male patients. However, the difference is marginal.

4.2 Analysis of Predictors of Baseline Acute Respiratory Distress

The association between baseline acute respiratory distress and each of the predictor
variables is assessed by fitting a univariable binary logistic regression model. Table 6
shows the results obtained by regressing baseline acute respiratory distress and each of

the predictor variables.
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Results in table 6 show that the predictor variables; patient age (years), weight (kg),
respiratory rate (per minute), diastolic blood pressure (mmHg), pneumonia, sepsis,
symptomatic severe anaemia (severe pallor combined with respiratory distress), coma at
admission (GCS < 10, BCS < 2), convulsions > 30 minutes, decompensated shock
(adults: systolic BP< 80 mmHg, children: systolic BP < 70 mmHg), hyperparasitaemia (>
500 parasites per high powered field), severe acidosis: deep breathing, blood transfusion,
mechanical ventilation, if a patient is currently treated for chronic illness and severe
prostration (not able to breastfeed < 6 m, or able to sit > 6 m) are individually significant
and are associated with the prediction of baseline acute respiratory distress in severe
malaria children. They have p-values less than 0.05. On the other hand, sex, systolic
blood pressure (mmHg), compensated shock (capillary refill > 3 sec temperature

gradient), and renal failure are individually not significant. Their p-values are greater than

0.05.

Table 6: Univariable model analysis for the relationship between baseline acute
respiratory distress and individual predictor variable

Variable Odds ratio (95% CI) P-Value
Patient age (years) 0.84 (0.80, 0.87) <0.001
Sex

male 0.91 (0.79, 1.05) 0.213
Weight (kg) 0.91 (0.89, 0.93) <0.001
Respiratory rate (per minute) 1.04 (1.04, 1.05) <0.001
Systolic blood pressure (mmHg) 1.00 (0.99, 1.00) 0.209
Diastolic blood pressure (mmHg) 0.99 (0.99, 1.00) 0.022
Pneumonia 3.56 (2.90, 4.39) <0.001
Sepsis 1.58 (1.30, 1.94) <0.001
Severe anaemia 1.67 (1.45,1.94) <0.001
Coma at admission 1.32 (1.14, 1.54) <0.001
Convulsions > 30 minutes 0.74 (0.63, 0.88) <0.001
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Compensated shock 1.06 (0.83, 1.306) 0.649

Decompensated shock 1.94 (1.38, 2.73) <0.001
Hyperparasitaemia 2.19 (1.41, 3.39) <0.001
Severe acidosis 3.32(2.82,3.91) <0.001
Blood transfusion 1.47 (1.26, 1.70) <0.001
Mechanical ventilation 2.18 (1.21, 3.92) 0.009
Currently treated for chronic illness 2.08 (1.03, 4.19) 0.041
Renal failure 1.21 (0.35, 4.27) 0.762
Severe prostration 0.65 (0.56, 0.76) <0.001

Predictor variables which are statistically significant at 5% level of significance, from a
univariable binary logistic regression model are used to generate a predictive model of
baseline acute respiratory distress. This predictive model is a multivariable binary logistic
regression model. Table 7 presents results of a multivariable analysis of admission
features and their effect in predicting baseline acute respiratory distress in children with

severe malaria.

From multivariable analysis in Table 7, respiratory rate (per minute), pneumonia, sepsis,
convulsions > 30 minutes, hyperparasitaemia (>500 parasites per high powered field),
severe acidosis: deep breathing, if a patient is currently treated for chronic illness and
severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m) are significant

predictors of baseline acute respiratory distress in severe malaria children.

A one-unit increase in respiratory rate (per minute) of a patient with severe malaria leads
to a 1.03 times increased risk of developing baseline acute respiratory distress (OR: 1.03,
Cl: 1.03 - 1.04, p-value < 0.001). A patient who presents pneumonia on admission has

2.49 times increased risk of developing baseline acute respiratory distress as compared to
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a patient without pneumonia (OR: 2.49, CI: 1.99 - 3.13, p-value < 0.001). A severe
malaria patient with sepsis on admission has 1.46 times increased risk of developing
baseline acute respiratory distress as compared to a patient without sepsis on admission
(OR: 1.46, CI: 1.18 - 1.82, p-value = 0.001). A patient with hyperparasitaemia (>500
parasites per high powered field) on admission has 1.96 times increased risk of
developing baseline acute respiratory distress as compared to a patient without
hyperparasitaemia on admission (OR: 1.96, Cl: 1.21 - 3.16, p-value = 0.006). A severe
malaria patient with convulsions > 30 minutes on admission has a 23% reduced risk of
developing baseline acute respiratory distress as compared to a patient not presenting
convulsions > 30 minutes on admission (OR: 0.77, CI: 0.63 - 0.93, p-value = 0.007). A
patient presenting severe acidosis: deep breathing on admission has 2.49 times increased
risk of developing baseline acute respiratory distress as compared to a patient not
presenting severe acidosis (OR: 2.49, CI: 2.09 - 2.97, p-value < 0.001). A patient who is
currently being treated for chronic illness has 2.32 increased risk of developing baseline
acute respiratory distress as compared to a patient not currently treated for chronic illness
(OR: 2.32, CI: 1.05 - 5.14, p-value = 0.038). A patient with severe prostration (not able
to breastfeed < 6 m, or able to sit > 6 m) has 31% reduced risk of developing baseline
acute respiratory distress as compared to a patient without severe prostration on

admission (OR: 0.69, CI: 0.55 - 0.88, p-value = 0.003).

The predictive model shows that the greatest predictors of baseline acute respiratory
distress in severe malaria African children are pneumonia, severe acidosis, if a patient is
currently treated for chronic illness, hyperparasitaemia, sepsis, respiratory rate (per

minute), convulsions > 30 minutes and severe prostration, in that order.
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On the other hand, patient age (in years), weight (kg), diastolic blood pressure (mmHg),
symptomatic severe anaemia (severe pallor combined with respiratory distress), coma at
admission (GCS < 10, BCS < 2), decompensated shock (Adults: systolic BP< 80 mmHg,
Children: systolic BP < 70 mmHg), blood transfusion and mechanical ventilation do not
significantly predict the development of baseline acute respiratory distress in severe

malaria African children.

To validate the constructed prediction model, Hosmer-Lemeshow goodness-of-fit test
was carried out. This statistical test measures the correspondence of the observed and
predicted values of the outcome variable (baseline acute respiratory distress). A better
model fit is characterized by insignificant differences between the observed and predicted
values. It tests the hypothesis H,: there is no difference between the predicted and
observed values against H,: there is a difference between the predicted and observed
values. With the p-value of 0.9935 in Table 7, we fail to reject the null hypothesis and
conclude that there is no significant difference between the observed and predicted values

of the predictive model, suggesting that the model fitted the data well.

Table 7: Multivariable analysis (predictive model analysis) of admission features and
their effect in predicting baseline acute respiratory distress in children with severe
malaria.

Variable Odds ratio (95% CI) P-Value
Patient age (years) 0.98 (0.91, 1.06) 0.629
Weight (kg) 0.97 (0.94, 1.01) 0.178
Respiratory rate (per minute) 1.03 (1.03, 1.04) <0.001
Diastolic blood pressure (mmHg) 1.00 (1.00, 1.01) 0.338
Pneumonia 249 (1.99, 3.13) <0.001
Sepsis 1.46 (118, 1.82) 0.001
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Severe anaemia 1.12 (0.91, 1.37) 0.287

Coma at admission 1.26 (0.97, 1.64) 0.088
Hyperparasitaemia 1.96 (1.21, 3.16) 0.006
Convulsions > 30 minutes 0.77 (0.63, 0.93) 0.007
Decompensated shock 1.36 (0.93, 2.00) 0.116
Severe acidosis 2.49 (2.09, 2.97) <0.001
Blood transfusion 0.98 (0.80, 1.19) 0.807
Mechanical ventilation 1.43 (0.76, 2.69) 0.269
Currently treated for chronic illness 2.32 (1.05, 5.14) 0.038
Severe prostration 0.69 (0.55, 0.88) 0.003
Constant 0.04 (0.02, 0.07) <0.001

X2 P-Value

Goodness-of-fit test
Hosmer-Lemeshow 30.17 0.9935

In order to visualise the predictive model, a nomogram was plotted in Figure 8. A
nomogram ranks the importance of a predictor variable in predicting the outcome
(baseline acute respiratory distress) in the context of the other predictor variables in the
model. Each of the sixteen predictor variables included in the predictive model were
arranged one by one on a horizontal plane with its scoring system, ranging from 0 to 10,

at the bottom. The total score ranged from 0 to 27.
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Figure 8: Nomogram for prediction of baseline acute respiratory distress
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Figure 9: Continued

Results in Figure 8 show predictors in the predictive model ranked with their
corresponding scores. Table 8 lists these predictors in order of importance (from highest

to lowest) in predicting baseline acute respiratory distress.

Table 8: Rank of predictors of baseline acute respiratory distress

Predictor Score
Respiratory rate (per minute) 10
Weight (Kgs) 3.6
Severe acidosis 2.5
Pneumonia 2.5
Currently treated for chronic illness 2.4
Hyperparasitaemia 2
Diastolic blood pressure 1.2
Sepsis 1
Mechanical ventilation 1
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Severe prostration 1

Decompensated shock 0.8
Convulsions > 30 minutes 0.75
Patient age (Years) 0.75
Coma 0.6
Severe anaemia 0.4
Blood transfusion 0.1

4.3 Analysis of Sensitivity, Specificity, Positive and Negative Predictive Values

To assess the predictive ability of a model, diagnostic accuracy measures such as
sensitivity, specificity, positive predictive values and negative predictive values are used.
First, an optimal probability cutoff point is generated by plotting graphs of sensitivity and

specificity on the same axes as in Figure 9.
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Figure 10: Optimal probability cutoff point

In Figure 9, optimal probability cutoff is found at the point where the graph of sensitivity
and specificity intersect. In this case, optimal probability cutoff is estimated to be 0.15.
This value is used as a cutoff point when calculating sensitivity, specificity, positive

predictive values and negative predictive values. These metrics are presented in Table 9.

Table 9 shows that there are 603 true positives, 1433 false positives, 264 false negatives
and 3126 true negatives. In the 5426 patients recruited in the study, a total of 867 had
baseline acute respiratory distress while 4559 did not have baseline acute respiratory

distress. This is the gold standard test. The predictive model classified a total 2036
73

T
1.00



patients as positives and 3390 as negatives. The overall rate of correct classification for
the predictive model is estimated to be 68.72%, with 69.55% of the patients with baseline
acute respiratory distress correctly classified positive for the disease (sensitivity) and
68.57% of the patients without baseline acute respiratory distress correctly classified
negative for the condition (specificity). Table 9 also indicates that 29.62% of the patients
are classified as having baseline acute respiratory distress given that the predictive model
result is positive (positive predictive value) and 92.21% of the patients are classified as
not having baseline acute respiratory distress given that the predictive model result is

negative (negative predictive value).

Table 9: Sensitivity, specificity, positive and negative predictive values

True
Classified Disease (D) No disease (D) Total
Positive (T) 603 1433 2036
Negative (T) 264 3126 3390
Total 867 4559 5426

Classified positive if predicted Pr(D) = 0.15

True D defined as baseline acute respiratory distress # 0

Sensitivity Pr(T|D) 69.55%
Specificity Pr(T|D) 68.57%
Positive predictive value Pr(D|T) 29.62%
Negative predictive value Pr(D|T) 92.21%
False + rate for true D Pt(T|D) 31.43%
False — rate for true D Pr(T|D) 30.45%
False + rate for classified + Pr(D|T) 70.38%
False — rate for classified — Pr(D|T) 7.79%
Cotrectly classified 68.72%
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4.4 Analysis of the Area Under ROC Curve (AUC)

In order to assess the predictive model’s discriminative power, sensitivity against
specificity is plotted. That is, to determine the predictive model’s ability to distinguish
between children with baseline acute respiratory distress and those without baseline acute
respiratory distress. This is achieved by examining the shape of a ROC curve and the
AUC value. AUC measure is used to assess the diagnostic accuracy or the performance
of a predictive model. Figure 10 is the ROC curve with the associated AUC value

presented in Table 10.
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Figure 11: Receiver Operating Characteristic (ROC) curve
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Figure 10 shows that the predictive model under consideration has a good ability to
distinguish between children with baseline acute respiratory distress and those without
baseline acute respiratory distress. This is evidenced by the curve's proximity to the

upper-left corner.

The curve is Figure 10 has an area of 0.75 (95% CI: 0.73 - 0.77) under it as presented in
Table 10. This indicates that the predictive model is good at classifying severe malaria
patients as having baseline acute respiratory distress or not, i.e., a 0.75 rate indicates that

the predictions are not by random choice.

Table 10: Area under the ROC curve

Observations Area under ROC curve (95% CI) Std. error

5,426 0.75 (0.73, 0.77) 0.009

4.5 Classification Tree Analysis

Classification trees are prediction models constructed by recursively partitioning a data
set and fitting a simple model to each partition. The goal, in this study, is to find a model
for predicting if a patient is at higher or lower risk of developing baseline acute
respiratory distress depending on the value(s) of the clinical factors he/she is presenting.

A classification tree is presented in Figure 11.
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Figure 12: Classification tree for predicting baseline acute respiratory distress

Figure 11 is a classification tree created from a sample of 5426 observations partitioned
into different branches depending on conditions presented by patients. The classification
tree classifies patients as having a higher risk or lower risk of developing baseline acute
respiratory distress. There is a splitting-criteria at each node of the tree. The value of n at

each terminal node indicates the number of patients who fall in that category based on the
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conditions they present on admission. The proportion at each terminal node represents the
proportion of patients who are classified as having baseline acute respiratory distress out
of n. Thus, higher and lower proportions are indicative of higher and lower risks,

respectively, of developing baseline acute respiratory distress.

Results show that 10 patients are classified as having respiratory rate of at least 69.5 per
minute, having hyperparasitaemia (>500 parasites per high powered field) and without
severe acidosis: deep breathing. These patients have 80% increased risk of developing
baseline acute respiratory distress (proportion = 0.8,n = 10). This is followed by 42
patients who are classified as having respiratory rate of 39.5 - 65 per minute, presenting
severe acidosis: deep breathing, presenting pneumonia and without severe prostration
(not able to breastfeed < 6 m, or able to sit > 6 m). These patients have 73.8% increased
risk of developing baseline acute respiratory distress (proportion = 0.738,n = 42).
Results also show that 46 patients are classified as having respiratory rate of at least 69.5
per minute, having pneumonia, without severe acidosis and without hyperparasitaemia
(>500 parasites per high powered field). These patients have 47.8% higher risk of

developing baseline acute respiratory distress (proportion = 0.478,n = 46).

Figure 11 indicates that 41 patients are classified as having respiratory rate of at least
69.5 per minute, having sepsis, without severe acidosis: deep breathing, without
pneumonia and without hyperparasitaemia (>500 parasites per high powered field). These
patients have 46.3% higher risk of developing baseline acute respiratory distress
(proportion = 0.463,n = 41). 60 patients are classified as having respiratory rate of at
least 39.5 per minute, having severe acidosis: deep breathing, having pneumonia and

having severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These
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patients have 40% higher risk of developing baseline acute respiratory distress
(proportion = 0.4,n = 60). 347 patients are classified as having respiratory rate of at
least 39.5 per minute, having severe acidosis: deep breathing, without pneumonia and
without severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These
patients have 37.5% higher risk of developing baseline acute respiratory distress

(proportion = 0.375,n = 347).

Results in figure 11 also shows that 14 patients are classified as having respiratory rate of
at least 65 per minute, having severe acidosis: deep breathing, having pneumonia and
without severe prostration (not able to breastfeed < 6 m, or able to sit > 6 m). These
patients have 35.7% higher risk of developing baseline acute respiratory distress
(proportion = 0.357,n = 14). 163 patients are classified as having respiratory rate of
48.5 — 69.5 per minute, having pneumonia and without severe acidosis: deep breathing.
These patients have 31.3% higher risk of developing baseline acute respiratory distress
(proportion = 0.313,n = 163). 325 patients are classified as having respiratory rate of at
least 39.5 per minute, severe acidosis: deep breathing, severe prostration (not able to
breastfeed < 6 m, or able to sit > 6 m) and without pneumonia. These patients have
27.7% higher risk of developing baseline acute respiratory distress (proportion =
0.277,n = 325). 109 patients are classified as having respiratory rate less than 48.5 per
minute, having pneumonia and without severe acidosis: deep breathing. These patients
have 25.7% higher risk of developing baseline acute respiratory distress (proportion =

0.257,n = 109).
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It is also observed that 186 patients are classified as having respiratory rate of at least
69.5 per minute, without severe acidosis: deep breathing, without pneumonia, without
sepsis and without hyperparasitaemia (>500 parasites per high powered field). These
patients have 24.2% higher risk of developing baseline acute respiratory distress
(proportion = 0.242,n = 186). 1253 patients are classified as having respiratory rate of
48.5 — 69.5 per minute, without severe acidosis: deep breathing and without pneumonia.
These patients have 17.2% higher risk of developing baseline acute respiratory distress
(proportion = 0.172,n = 1253). 150 patients are classified as having respiratory rate
less than 39.5 per minute and having severe acidosis: deep breathing. These patients have
15.3% increased risk of developing baseline acute respiratory distress (proportion =
0.153,n = 150). 1446 patients are classified as having respiratory rate of 37.5 — 48.5 per
minute, without severe acidosis: deep breathing and without pneumonia. These patients
have 8.8% increased risk of developing baseline acute respiratory distress (proportion =

0.0878,n = 1446).

Lastly, 1234 patients are classified as having respiratory rate less than 37.5 per minute,
without severe acidosis: deep breathing and without pneumonia. These patients have
4.0% increased risk of developing baseline acute respiratory distress (proportion =

0.0397,n = 1234).
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CHAPTER 5

DISCUSSION

The wide range of disease states linked to the development of acute respiratory distress in
children and the fact that the diagnosis of acute respiratory distress in children is a
syndrome rather than a distinct entity with a validated diagnostic confirmatory test add to
the inherent difficulties of investigating the development of acute respiratory distress in
children. This challenge is exacerbated by limited resources in most African settings and

high prevalence of malaria in Sub-Saharan Africa.

This study used data from AQUAMAT trial which was conducted from October 3, 2005,
to July 14, 2010, among children (<15 years) who had been hospitalized for severe
malaria from eleven centres from nine participating African countries including;
Mozambique, The Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda, Rwanda, and the
Democratic Republic of the Congo (Dondorp et al., 2010). This study aimed at predicting
baseline acute respiratory distress in African children who have severe malaria. In
particular, the study intended to generate a predictive model based on demographic and
clinical factors as well as develop a classification tool, based on the conditions presented
by the patient, which can be used to predict children at high risk of developing baseline
acute respiratory distress so as to timely escalate these cases for further laboratory tests.

Identifying risk factors and understanding which patients are at risk of developing
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baseline acute respiratory distress is significantly important in order to be able to develop

preventative and early intervention mechanisms.

This study found that clinical features associated with baseline acute respiratory distress
are pneumonia, severe acidosis: deep breathing, if a patient is currently treated for
chronic illness, hyperparasitaemia (>500 parasites per high powered field), sepsis,
respiratory rate (per minute), convulsions > 30 minutes and severe prostration (not able to

breastfeed < 6 m, or able to sit > 6 m).

Both univariable and multivariable binary logistic regression models show that having
pneumonia poses a highest risk of developing baseline acute respiratory distress in severe
malaria children. This is so because pneumonia, in itself, is a form of acute respiratory
illness and it directly affects the lungs by filling up the alveoli with pus and fluid which
limits oxygen intake and makes breathing painful (WHO, 2021). Similar findings were
reported by Bellani et al. (2016) from the Large Observational Study to Understand the
Global Impact of Severe Respiratory Failure (LUNG SAFE) which recruited a sample of
29,144 patients from 459 ICUs and identified 3022 patients with acute respiratory
distress. Of those patients, 59.4% had pneumonia as a risk factor for acute respiratory
distress. This study has also shown that severe acidosis: deep breathing is the second
ranked risk factor associated with baseline acute respiratory distress in severe malaria
children. Lungs and kidneys are the organs which help in maintaining pH balance in the
body. Excess of acids has a potential of damaging these organs hence resulting into acute

respiratory distress. These findings are similar to what was reported by Mzumara et al.,
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(2021) that the signs of acute respiratory distress are commonly associated with severe
acidosis, as is the findings of similar studies in The Gambia and Kenya (English et al.,

2002; Mzumara et al., 2021).

This study also suggests that patients who are currently treated for chronic illness are at a
higher risk of developing baseline acute respiratory distress. Paediatric patients with
preexisting chronic illness, such as human immunodeficiency virus (HIV) and cancer,
and currently treated for such illnesses, are at an increased risk of developing baseline
acute respiratory distress because these patients have worse outcomes, such as increased
hospital mortality, and have proportionately more infections as the cause of baseline
acute respiratory distress (Cortegiani et al., 2018; Erickson et al., 2007).
Hyperparasitaemia (>500 parasites per high powered field), sepsis, respiratory rate (per
minute), convulsions > 30 minutes and severe prostration (not able to breastfeed < 6 m,
or able to sit > 6 m) also increase the risk of and are associated with development of
baseline acute respiratory distress in severe malaria children. For instance, as reported by
Khemani et al. (2018), sepsis is the most common cause of acute respiratory distress.
Diffuse alveolar damage may arise as a result of endothelial activation, cytokine-
mediated inflammatory disorders and reactive oxygen species that are present in

individuals with severe sepsis (Truwit et al., 2014).

Though the univariable model, in this study, show that age is statistically significant, the
multivariable model suggest that age is not associated with development of baseline acute

respiratory distress in severe malaria children. This is in resonance with some literature
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reports that indicate that the immune system develops and assumes more complexity with
age which suggests reduced risk of developing baseline acute respiratory distress as age
increases (Hartel et al., 2005). Thus, younger children are more vulnerable than older
people. However, epidemiologic studies to date have not consistently supported distinct
paediatric acute respiratory distress outcomes based on age, with the majority of research
finding no association between age and acute respiratory distress in children (Flori et al,

2005).

Both univariable and multivariable models indicate no association between sex and
baseline acute respiratory distress in severe malaria children. Similar findings are
reported by Flori et al. (2005) indicating that there is no difference in the likelihood of
worse clinical outcomes, emanating for paediatric acute respiratory distress, between
male and female genders. The univariable model, in this study, show that weight (kg) is
associated with baseline acute respiratory distress in severe malaria children. That is,
increase in weight (or body mass index) results in increased risk of developing baseline
acute respiratory distress. While underweight children with acute respiratory distress
have increased rates of mortality, obese individuals require longer hospital stays and ICU,
but display the lowest risk of in-hospital mortality when compared to other weight
categories (Gong et al., 2010). This is what Zhi et al. (2016) called ‘obesity paradox’. On
the other hand, the multivariable model indicates that weight (kg) is not associated with

any risk of developing baseline acute respiratory distress in severe malaria children.
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The univariable model, in this study, show that blood transfusion and mechanical
ventilation are significant predictors of baseline acute respiratory distress in severe
malaria children. Mechanical ventilation, for instance, causes direct lung injury to a
patient affecting the alveoli epithelial and endothelial cells. This may result in
development of baseline acute respiratory distress and the worse outcomes associated
with it. Transfusion of blood products is a less common endeavour; however, it is a
significant cause of acute lung injury and acute respiratory distress. Researchers have
verified that transfusions of various blood products, especially those high in protein such
as fresh frozen plasma and platelets, are linked to the development of acute respiratory
distress in children as well as negative consequences like increased mortality (Church et
al., 2009; Khan et al., 2007). On the contrary, however, the multivariable model suggests
that there is no association between blood transfusion as well as mechanical ventilation

with the development of baseline acute respiratory distress in severe malaria children.

A nomogram was constructed in order to visualise results of a predictive model. It
showed that the most important (in descending order) predictors of baseline acute
respiratory distress are respiratory rate (per minute), weight, severe acidosis, pneumonia,
if a patient is currently treated for chronic illness, hyperparasiteamia, diastolic blood
pressure, sepsis, mechanical ventilation, severe prostration, decompensated shock,
convulsions, patient age, coma, severe anaemia and blood transfusion. However,
cognizant of the fact that other predictors in the predictive model are not statistically

significant, it implies that the major predictors of baseline acute respiratory distress are
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respiratory rate (per minute), severe acidosis, pneumonia, if a patient is currently treated

for chronic illness, hyperparasiteamia, sepsis, severe prostration and convulsions.

The study conducted a Hosmer-Lemeshow goodness-of-fit test to validate the model. The
test gave a p-value of 0.9935 which indicted that there is no significant difference
between the observed and predicted values of the predictive model, suggesting that the

model fitted the data well.

With an optimal probability cutoff estimated to be 0.15, the calculated measures of
diagnostic accuracy indicated that the predictive model, in this study, has 68.72% overall
rate of correctly classifying patients as having baseline acute respiratory distress or not.
The predictive model also show that 69.55% of the patients with baseline acute
respiratory distress are correctly classified positive for the disease and 68.57% of the
patients without baseline acute respiratory distress are correctly classified negative for the
condition. Findings also indicate that 29.62% of the patients are classified as having
baseline acute respiratory distress given that the predictive model result is positive and
92.21% of the patients are classified as not having baseline acute respiratory distress
given that the predictive model result is negative. The predictive model has an AUC
value of 0.75. These results demonstrate that the predictive model developed has a strong
discriminative power. That is, it has a good ability to distinguish between severe malaria
children with baseline acute respiratory distress and those without baseline acute

respiratory distress. The AUC value shows that the prediction is not a random choice.
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This study also developed a classification tree as a decision tool to help identify severe
malaria patients who are at higher or lower risk of developing baseline acute respiratory
distress. This has a potential of helping health practitioners in early identification of
baseline acute respiratory distress by considering the conditions presented by a patient.
This will also guide proper management and timely interventions provided to such
patients in order to minimise worse outcomes associated with baseline acute respiratory
distress in children. The classification tree has ranked the presence of pneumonia, severe
acidosis: deep breathing, hyperparasitaemia (>500 parasites per high powered field),
sepsis as well as increased respiratory rate (per minute) as major conditions classifying a
patient of being at high risk of developing baseline acute respiratory distress. These

results are consistent with what was reported by Kohne and Flori (2020).
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CHAPTER 6

CONCLUSION, RECOMMENDATIONS, LIMITATIONS AND AREAS FOR
FURTHER RESEARCH

6.1 Conclusion

Acute respiratory distress (ARD) is a global health concern due to its high rates of
morbidity and mortality in children. Severe malaria is one of the most common
conditions that accelerates development of ARD in African children. This study aimed at
establishing a predictive model for predicting baseline ARD in African children with
severe malaria as well as classify the predictors in order of importance of how they
influence development of baseline ARD. This retrospective cohort study was a secondary
analysis of AQUAMAT data collected from nine African participating countries
including; Mozambique, The Gambia, Ghana, Kenya, Tanzania, Nigeria, Uganda,

Rwanda, and the Democratic Republic of the Congo.

To determine demographic and clinical predictors of baseline ARD in African children
with severe malaria, univariable and multivariable binary logistic regression models were
used. These predictors were visualised and ranked using a nomogram. Several
approaches were used to validate the predictive model such as Hosmer-Lemeshow
goodness-of-fit test, sensitivity, specificity, positive predictive values, negative predictive

values and area under the Receiver Operating Characteristic (ROC) curve.
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The study revealed that several factors are associated with development of baseline acute
respiratory distress in African children with severe malaria. The multivariable binary
logistic regression model revealed that the major predictors of baseline ARD were
pneumonia, severe acidosis, if a patient is currently treated for chronic illness,
hyperparasitaemia, sepsis, respiratory rate, convulsions and severe prostration. The
nomogram ranked important (in descending order) predictors of baseline acute
respiratory distress as respiratory rate (per minute), severe acidosis, pneumonia, if a
patient is currently treated for chronic illness, hyperparasiteamia, sepsis, severe

prostration and convulsions.

The Hosmer-Lemeshow goodness-of-fit test indicated that the predictive model fitted
well in the data. The predictive model was valuable in predicting baseline ARD with
overall correct classification of 68.72%. It also had high discriminative power with area
under the ROC curve of 0.75. That is, the predictive model was able to distinguish
between a patient with baseline acute respiratory distress and a patient without the
condition. Classification tree ranked pneumonia, severe acidosis, hyperparasitaemia,
sepsis, increased respiratory rate as well as severe prostration as major conditions
classifying a patient of being at high risk of developing baseline ARD. These findings
will help medical practitioners in early identification of severe malaria children who are
at high risk of developing baseline ARD. This will necessitate improved management and
timely interventions provided to such patients in order to prevent development of baseline
ARD. These findings will also save medical practitioners’ time in identifying and treating

children with baseline ARD. The findings will also help WHO and/or Ministries of
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Health in different countries to come up with health policies and guidelines that guide

diagnosis and management of acute respiratory distress in severe malaria children.

6.2 Recommendations

1.

It is important to train medical practitioners on strategies that would help to
prevent ARD in children with severe malaria by evaluating the risk of ARD
during hospitalization.

It is important to formulate guidelines on early identification, interventions,
management and treatment of children with severe malaria before developing into

ARD.

6.3 Study Limitations

1. The data used in the analysis of this study was collected between 2005 and 2010.

Due to numerous interventions, the results may not reflect the current situation on
the ground.

Being an observational study, it is essential to highlight that the identified
predictors may not imply causality, and further prospective studies are needed to
establish a causal relationship.

The choice of variables included in the analysis may influence the results, and
there could be other relevant predictors of baseline ARD that were not included in

the study.
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6.4 Areas for further research
1. The study proposes the same area of research but focusing on prospective study
method to establish causal relationship between predictor variables and baseline
ARD.
2. The study proposes the investigation of health system factors such as access to
healthcare facilities, availability of resources, and quality of healthcare delivery
that may influence the risk of baseline ARD in severe malaria children, thereby

informing policy and resource allocation decisions.
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APPENDICES

APPENDIX A: STATA Codes

*+DO FILE FOR MSC BIOSTATISTICS THESIS-INNOCENT GONDWE***
use "HAINNOCENT GONDWE\SEMESTER 3-4_Research\DATA\AQUAMAT_child.dta"

*yviewing dataset™*

browse

**standardising variable sex to be lower cases only**
replace sex = lower(sex)

tabulate sex

**encoding, recoding and labeling variable sex**

encode sex, generate(sex_numeric)

recode sex_numeric (1=0) (2=1), generate(sex_numeric_recoded)
rename sex_numeric_recoded sex1

label define gender 0 "female" 1 "male"

label values sex1 gender

**overview of the variables of interest in the data**
tabulate arespins
tabulate sex1

tabulate patage
tabulate aweight
tabulate aresp
tabulate abloodprsyst
tabulate abloodprdiast
tabulate becmaln
tabulate btransf
tabulate bvent

tabulate aanaemia
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tabulate ashockcomp
tabulate ashockdecomp
tabulate ahyperp
tabulate acoma
tabulate aconvulsions
tabulate aacidosis
tabulate aprost
tabulate acurchron
tabulate bcgast
tabulate bpneum
tabulate bseps
tabulate odead
tabulate odead?2

tabulate brenal

**cleaning data by replacing missing values**
egen mean_aweight =mean(aweight)
replace aweight = mean_aweight if missing(aweight)

tabulate aweight

egen mean_aresp =mean(aresp)
replace aresp = mean_aresp if missing(aresp)

tabulate aresp

egen mean_abloodprsyst=mean(abloodprsyst)
replace abloodprsyst= mean_abloodprsyst if missing(abloodprsyst)

tabulate abloodprsyst
egen mean_abloodprdiast =mean(abloodprdiast)
replace abloodprdiast = mean_abloodprdiast if missing(abloodprdiast)

tabulate abloodprdiast

recode acurchron (2=0), generate(acurchron_New)

tabulate acurchron_New
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*frenaming variable labels in the data**

label var odrug "Which study-drug did the patient receive (value)"

label var odrug2 "Which study-drug did the patient receive (labels)"

label var arespins "Respiratory distress: Costal indrawing/recession, respiratory insufficiency"
label var country "Country"

label var sex "Sex"

label var sex1 "Sex1"

label var patage "Patient age in years"

label var aweight "Weight (kg)"

label var aresp "Respiratory rate (/min)"

label var abloodprsyst "Blood pressure - Systolic (mmHg)"

label var abloodprdiast "Blood pressure - Diastolic (mmHg)"

label var bemaln "Severe malnutrition”

label var brenal "Renal failure (urine output <0.5 ml/kg/hour, for >24 hours)"

label var btransf "Blood transfusion"

label var bvent "Machanical ventilation"

label var acutchron_New "Cutrrently treated for chronic illness (value)"

label var acurchron? "Currently treated for chronic illness (label)"

label var begast "Gastro enteritis"

label var bpneum "Pneumonia (Y/N)"

label var bseps "Sepsis (Y/N)"

label var odead "Patient died/patient survived (value)"

label var odead2 "Patient died/patient survived (label)"

label var aanaemia "Symptomatic severe anaemia (severe pallor combined with respiratory distress)"
label var acoma "Coma at admission (GCS <= 10, BCS <= 2)"

label var ashockcomp "Compensated shock (Only for children: capillary refil >= 3 sec/temperature
gradient)"

label var ahyperp "Hypetparasitaemia (>500 parasites per high powered field)"

label var aacidosis "Suspected severe acidosis: Deep breating”

label var ashockdecomp "Decompensated shock (Adults: systolic BP < 80 mmHg, Children: systolic
BP < 70 mmHg)"

label var aconvulsions "Convulsions > 30 minutes"

label var aprost "Severe prostration (Not able to breastfeed < 6m, or able to sit > 6m)"

*¥creating table of baseline characteristics (table 1)**
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ssc install tablel _mc

tablel_mc, by(odrug2) ///

vars( ///

country cat %4.0f \ ///

patage conts %4.0f \ ///
aweight contn %4.0f \ ///

sex1 cat %4.0f\ ///

aresp contn %4.0f\ ///
abloodprsyst contn %4.0f\ ///
abloodprdiast contn %4.0f \ ///
bpneum bin %4.0f \ ///

bseps bin %4.0f \ ///

aanaemia bin %4.0f \ ///
arespins bin %4.0f \ ///

acoma bin %4.0f \ ///
aconvulsions bin %4.0f \ ///
ahyperp bin %4.0f\ ///
ashockcomp bin %4.0f \ ///
ashockdecomp bin %4.0£ \ ///
aacidosis bin %4.0f \ ///
btransf bin %4.0f \ ///

bvent bin %4.0f \ ///
acurchron_New bin %4.0f \ ///
brenal bin %4.0f\ ///

aprost bin %4.0f \ ///
)11/

nospace onecol missing total(before) ///

saving("table 1.xIsx", replace)

*descriptive statistics**
*exploring data**
tabstat patage, statistics(mean sd max min)

tabstat patage, statistics(mean sd max min) by(sex1)
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*Hlabeling values for respiratory distress**
label define arespins_1 0 "No" 1 "Yes"
label values arespins arespins_1

tabulate arespins

**Bar chart of respiratory distress by survival**
graph bar arespins, over(odead2) ytitle(Proportion of patients with respiratory distress) ylabel(,

angle(horizontal)) graphregion(fcolor(white))

**Histogram for patient age (years)**
histogram patage, bin(15) ytitle(Proportion) xtitle(Patient age (years)) ylabel(, angle(horizontal))
graphregion(fcolor(white))

**Histogram for weight (kg)**
histogram aweight, bin(20) ytitle(Proportion) xtitle(Weight (kg)) ylabel(, angle(horizontal))
graphregion(fcolor(white))

**Histogram for respiratory rate (per minute)**
histogram aresp, bin(20) ytitle(Proportion) xtitle(Respiratory rate (per minute)) ylabel(,

angle(horizontal)) graphregion(fcolor(white))

**Histogram for systolic blood pressure (mmHg)**
histogram abloodprsyst, bin(20) ytitle(Proportion) xtitle(Systolic blood pressure (mmHg)) ylabel(,
angle(horizontal)) graphregion(fcolor(white))

**Histogram for diastolic blood pressure (mmHg)**

histogram abloodprdiast, bin(20) ytitle(Proportion) xtitle(Diastolic blood pressure (mmHg)) ylabel(,
angle(horizontal)) graphregion(fcolor(white))

**Bar chart of respiratory distress by country**

graph bar arespins, over(sexl) ytitle(Proportion of patients with respiratory distress) ylabel(,

angle(horizontal)) graphregion(fcolor(white))

*¥scatter plot of weight (kg) against patient age (years)**
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scatter aweight patage, xtitle(Patient age (years)) ytitle(Weight (kg)) ylabel(, angle(horizontal))
graphregion(fcolor(white))

*+univariable logistic regression modelFtrrkitiiriititkrRRk
logit arespins patage, or

logit arespins i.sex1, or

logit arespins aweight, or

logit arespins aresp, or

logit arespins abloodprsyst, or
logit arespins abloodprdiast, or
logit arespins bpneum, or

logit arespins bseps, or

logit arespins aanaemia, or

logit arespins acoma, or

logit arespins ahyperp, or

logit arespins aconvulsions, or
logit arespins ashockcomp, or
logit arespins ashockdecomp, or
logit arespins aacidosis, or

logit arespins btransf, or

logit arespins bvent, or

logit arespins acurchron_New, or
logit arespins brenal, or

logit arespins aprost, or

#*multivariable logistic regression model#rtiritiiikititikkk
logit arespins patage aweight aresp abloodprdiast bpneum bseps aanaemia acoma ahyperp

aconvulsions ashockdecomp aacidosis btransf bvent acurchron_New aprost, or

**generating optimal cutoff point by plotting sensitivity and specificity using lsens**
Isens, genprob(cutoff) recast(line) ylabel(, angle(horizontal)) graphregion(fcolor(white)) xline(0.15,
Ipattern(dash)) xlab(0 0.15 0.25(0.25)1)

**calculating sensitity, specificity, positive predictive value and negative predictive value**

estat classification, cutoff(0.15)
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**predicted probabilities/values for respiratory distress**

predict arespins_prdct

*¥plot of ROC**
roctab arespins arespins_prdct, graph recast(line) rlopts(lcolor(black) Iwidth(vthin)) ylabel,
angle(horizontal)) graphregion(fcolor(white))

**Area under the ROC curve**

roctab arespins arespins_prdct, detail

// development of prognostic scoring system**

** installation of nomolog for this old version stata-journal**

net from http://www.stata-journal.com/software

net cd sj15-2

net desctibe st0391

net install st0391

window menu append item "stUserGraphics™"&Npmogram post logistic regression""dbnomolog"

window menu refresh

*nomogram code**

logit arespins patage aweight aresp abloodprdiast bpneum bseps aanaemia acoma ahyperp
aconvulsions ashockdecomp aacidosis btransf bvent acurchron_New aprost, or

nomolog

**Hosmer-Lemeshow test**

estat gof
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APPENDIX B: R Codes

#CLASSIFICATION TREE R CODE — INNOCENT GONDWE
#Loading libraries

library(haven) #for importing and reading stata (.dta) dataset
library(dplyt) #for recoding variables

library(rpart) #for fitting decision trees

library(rpart.plot) #for plotting decision trees

#reading dataset from stata

AQUAMAT _child <- read_dta("H:/INNOCENT GONDWE/SEMESTER
4_Research/DATA/AQUAMAT_child.dta")

View(AQUAMAT_child)

#cleaning data by replacing missing values
AQUAMAT_child$aresplis.na(AQUAMAT_child$aresp)]| <-mean(AQUAMAT_ child$aresp,
narm=TRUE)

#recoding variable

AQUAMAT_child %>% mutate(acurchron=recode(acurchron, "2=0; 0=0; 1=1"))

#setting seed
set.seed(123)

#building the initial tree
tree <- rpart(arespins
bpneum+aacidosis+acurchron+ahyperp+bseps+aresp+aconvulsions+aprost,

data=AQUAMAT_child, control=rpart.control(cp=.0001))

#viewing results of the initial tree

printcp(tree)

#identifying best cp value to use

best <- tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"]
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#producing a pruned tree based on the best cp value

pruned_tree <- prune(tree, cp=best)

#plotting the pruned tree
prp(pruned_tree,
faclen=0, #use full names for factor labels
extra=1, #display the number of observations that fall in the node
branch=1, #produce square shouldered branch lines
yesno=2, #write 'yes' and 'no' at all splits
roundint=T, #round values to integers at splitting nodes

digits=3) #display 3 decimal places in terminal nodes
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